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GIVING LARGE STREAMING REYNOLDS NUMBERS

G. DE VAHL DAVIS* and P. D. RICHARDSON
Division of Engineering, Brown University, Providence, R.I. 02912, U.S.A.

(Received 28 April 1972 and in revised form 23 October 1972)

Abstract— Natural convection around a horizontal circular isothermal cylinder is considered in conjunc-
tion with a transverse standing sound field propagated in the vertical or the horizontal direction. The
problem is treated within the framework of boundary-layer theory with the formulation including creation
or modification of the steady convective motion by the Reynolds stresses associated with the oscillations.
Results are presented for a range of parameters expressing boundary layer quantities and oscillation
magnitudes for Pr = 0-7 and 2-85. Horizontal oscillations increase heat transfer at the bottom of a cylinder,
and vertical oscillations decrease the local heat transfer; when the intensity of vertical oscillations is large
enough, a region of reversed flow develops; corresponding effects have been observed in experiments.

1. INTRODUCTION

AMONG the methods which have been proposed
for achieving an economical increase in con-
vective heat transfer rates from a surface, the
use of oscillations in the fluid or vibrations of
the surface has received considerable attention.
Many experiments have been reported, with
most results indicating an increase in heat
transfer due to oscillations or vibrations. Until
very recently there was no analysis which
successfully accounted for any of the measure-
ments on a satisfactory, fluid-mechanical basis.
It is not expected that a single method of
analysis will be adequate to explain all reported
measurements, since there is strong evidence of
effects in both laminar and turbulent flows,
which usually must be considered separately.
A review of the subject was presented recently
[1].
Richardson [2] considered the extensive
measurements available for heat transfer from
a horizontal heated cylinder which is supported
in a transverse sound field or mechanically
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vibrated transverse to its axis. He presented an
analysis of the problem in which buoyancy
forces were ignored, and found favorable com-
parison with experimental results, especially
when the influence of buoyancy on the steady
motion generated by the oscillations was small
(Gr/Re* - 0).

It is the purpose of this paper to present an
analysis in which the influence of buoyancy is
restored, and to give some illustrative solutions. .
These solutions are obtained from the coupled
momentum and energy equations, and are valid
in a region near the lower stagnation point of the
cylinder. Before giving details of the analysis,
itisimportant to discuss the physical background
for it.

Attention is restricted here to sound fields
and vibrations for which the corresponding
acoustic wavelength is large compared with the
cylinder diameter. It is then possible to consider
the fluid in the neighborhood of the cylinder as
incompressible; for this case it is immaterial
whether the fluid is stationary and cylinder
oscillating or vice versa. This remains true if a
density variation occurs only in buoyancy terms
of the equations, i.e. if the Boussinesq approxi-
mation is made.
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FiG. 1. Isothermal acoustic streaming around a circular cylinder at small streaming
Reynolds numbers.

Isothermal, harmonic free-stream oscillations
in a fluid surrounding a stationary cylinder give
rise to a steady motion near the cylinder, known
as acoustic streaming [3]. This motion is
illustrated in Fig. 1 and consists of two parts. In
each quadrant a circulatory motion is estab-
lished. For horizontal oscillations (as shown) the
motion near the surface is from the equator to
the poles. Radially beyond this region the motion
is in the opposite direction. The outer flow
depends upon the streaming Reynolds number,
a’w/v; for small values of this parameter, the
outermost motion is as illustrated with flows
towards and away from the cylinder along
vertical and horizontal planes, while for large
values of the parameter the velocities in the
outer flow are reduced and the approaching

flow is more evenly distributed over the cir-
cumference of the cylinder, although the plane
jets of outflow remain [4].

When the flow around the cylinder is not
isothermal, the streaming motion is affected.
A variation in the local acoustic impedance
(p times the speed of sound) occurs through the
thermal boundary layer, and this alters the
Reynolds stresses—which drive the streaming
motion—in a way that is complicated to analyse.
Clearly, the general case involves a complicated
coupling between the momentum and energy
equations. The temperature distribution is deter-
mined from the energy equation in which the
coefficients include the streaming velocity com-
ponents. These velocity components, in turn,
are determined from the momentum equation
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for the time-averaged flow for which the driving
stresses are derived from the temperature field
(through the buoyancy term) and from the
primary oscillating flow. The local velocity
components for the latier flow are affected by
the complete impedance field. The same coupling
is found in ordinary convection problems, and
it is usually necessary to introduce simplifying
assumptions to make the equations tractable.
In incompressible flow the fluid properties are
often assumed constant. Comparison with ex-
periment is good unless very large property
variations are involved. It is encouraging that
Richardson [2] found good comparison on this
basis.

The convective motion near a horizontal
heated cylinder in a gravitational field has been
studied by Hermann [5], by Chiang and Kaye
[6],and by Saville and Churchill [ 7]. The method
of solution to be described here is an extension
of that of Chiang and Kaye, the final equations
being rather similar although their genesis is
somewhat different. As pointed out by Churchill
[8], a complete description of natural convec-
tion from a heated body immersed in an infinite
fluid is difficult to achieve because of the prob-
lem of representing adequately the motion far
from the body, where the fluid carried up by
buoyancy must descend. A boundary layer
approach is adopted here, and use of this method
cannot be expected to yield useful information
near to or downstream of the point of separation
of flow from the surface. The method is therefore
limited in its application to regions not too
remote from the forward stagnation point of the
flow (i.e. the lowest point on the circumference
of the cylinder), and also to large streaming
Reynolds numbers.

The diffusion of vorticity (periodically varying
in sign) into the fluid occurs through a character-
istic length scale, (v/w)?, known as the a.c.
boundary layer thickness. For boundary layer
analysis to be applied, this thickness must be
small compared with the cylinder radius. For
example, in fluids such as water or air, with
frequencies of 100 cps or more, the a.c. boundary
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layer is of the order of 1072 ft or less. For all
but the smallest cylinders, therefore, the bound-
ary layer approach is easily justified as far as the
oscillations are concerned. We wish to be able
to use, as one boundary condition in the equa-
tions derived, that the steady (streaming) motion
is vanishingly small at the edge of the thermal
boundary layer. This requires that a’w/v is
large, or that R/Gr? is large; but the latter condi-
tion implies that Gr* is small, which falls
outside the scope of boundary layer analysis.
The basic question is how to choose conditions
such that results of analysis can be compared
with existing experimental data or, if there are
inadequate local transport data available, how
to choose conditions such that suitable data
might be forthcoming. Since the analysis starts
from pure natural convection, for boundary
layer analysis to be employed the thermal
boundary layer must be fairly thin compared
with the cylinder radius. The laminar thermal
boundary layer thickness is of the order of
R/Gr*; for this to be smaller than, say, R/10
requires that Gr be greater than 10*. The effects
of oscillations appear to be stronger when the
a.c. boundary layer thickness is small compared
with the natural convection boundary layer
thickness. And for R/10 to be large in comparison
with an a.c. boundary layer thickness of 1073 ft
places a minimum of R of a few hundredths of
a foot.

When the direction of oscillation of the
cylinder, or of propagation of a sound field
around the cylinder, is either vertical or hori-
zontal, it is possible to obtain a similarity solution
for the region of the flow in the neighborhood
of the stagnation point on the bottom of the
cylinder.

2. DERIVATION OF EQUATIONS

The equations of motion are most conveniently
written in curvilinear coordinates, shown in
Fig. 1, in which the origin is at the lower stagna-
tion point, the x-axis lies along the surface and
the y-axis is normal to it. This notation is
standard for natural convection, but differs
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from the usage of Richardson in analyzing heat
transfer by acoustic streaming, where the z-axis
was normal to the cylinder.

At large distances from the cylinder, the fluid
possesses an oscillatory motion described by

U=U_coswt. (1

Nearer the cylinder, but outside the oscillation
boundary layer, the velocity component parallel
to the surface is

U(x, t) = U, (x)cos wt, given by either

U(x,t) = 2U_ sin (x/R) cos wt (2a)

or

U(x,t) = 2U _ cos (x/R) cos wt (2b)

depending upon whether the externally imposed
oscillations are in a vertical or horizontal
direction respectively.

In the curvilinear system, the boundary-layer
equations retain their usual form provided the
boundary-layer thickness is small in comparison
with the radius of curvature of the surface, and
the radius of curvature itself does not vary
rapidly along the surface. In the present case, the
latter condition is satisfied exactly (dR/dx = 0),
while the former is acceptable in the vicinity of
the origin.

Conservation of momentum in the x-direction
is expressed by

ou +u6_u_+vau
ot O0x oy

or, since
_lop _oU ., 0U
pox Ot 0x
by
Ou vazu 6_U_ ua—u— v@_u+ Ua—U
ot oy ot ox dy dx

+ gB(T — T _)sin (x/R). (3)

The equation has been written in this way
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because the terms on the left hand side are, for
thin layers and high frequencies, of a larger
order of magnitude than those on the right. The
associated energy equation is, as usual,

y oT ) oT . *T

ox dy oy

A first approximation to the solution of (3) is
found by setting the right hand terms to zero.
Introducing a dimensionless wall distance

n = y(w/2v)}, the first approximation to the
stream function is found to be

v=- (2 Sw-0

x [1 —exp(—(1 + i)n)] — 2n} exp (iwt).

The resulting velocity components are then

o

4

U= 5)_) = U, {cos wt — exp (—n)
x cos (wt — 1)} (5a)
v 2\
-z = - <5> Uo{r,coswt

1 1
+ —=cos (wt + 3n/4) + 72-exp(—r7)

72

x cos(wt — 5 — n/4)}. (5b)

These expressions may be inserted into
equation (3) to yield a second approximation
to the solution. Before doing so, however, we
anticipate that the final velocities may contain
both steady and fluctuating parts, and write,
in (3),

u=1u+u, v=">0+ 7.

When the time average of each term in (3) is
then calculated, the equation for the mean
motion is obtained:
o UydU,

TP T2 ax

2-
4 u 72

u va—};i—é;u

R

J —
—_— 207 . . 6
ayuv + gp0 sin x/R 6)
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The terms containing « and ¢ involve the
Reynolds stresses, analogous to those which
arise in turbulent flow. Here, however, the
fluctuations are the result of the imposed
oscillatory motion. We now assume that a
solution of the complete equation (6)—the time-
averaged version of (3}—can be obtained by using
the approximate expressions (5a + b) for o'
and v".
This leads to

u? = U2{L — exp(—n)cos n+ Lexp (—2n)}

— 2v\? ,fn 1 exp(—n)cosn
ey

1
- gexr)(—rl) cos 1 — ZeXp(—2n)}

and hence

6—(1;3 = U,U,{l — 2exp(—n)cosn

+ exp (—2n)}
0

- cJ1 1
a—yuv = — UOUO{E—Eexp(—n)cosn

1
+ Tz"’" 1)exp(—n)COS<n —g—)

1
+ —exp(— 2;1)}.
2
We next introduce the following set of
dimensionless variables* :
¢ =x/R;
E = Gr*y/R = Gr*(2v/w)*n/R = n/A say;
W = Grv¢éF(E);
G=06/0,=(T—-T)T,—T,).

Furthermore, since we are limiting our attention
to small values of x, we may set sin (x/R) = x/R.
Equations (6) and (4) then become

* These variables are not unique; for very small Prandtl
numbers, or to compute directly the case Gr = 0, Re, - o,
other sets of variables arise.
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F"+F F~F?*+G+KfUE)=0 (7)
G’ + Pr-G-F=0 @®)

where primes denote differentiation with respect
to E, K denotes
2 p2
4USR
Grv?’

the negative (positive) sign in (7) is taken for
horizontal (vertical) oscillations in the far field,
and f(AE) stands for

% exp(—AE)cos AE — % exp (—24E)
1

5
A typical variation of f(AE) with E is shown in
Fig 2. The approach of f(AE) to its limiting
value of zero is an indication of the diminishing
effect on the motion of the oscillations which
generate the Reynolds stresses.

The solution is seen to be dependent upon
three parameters: K, 4 and Pr. In the nomen-
clature used previously by Richardson [9],

K = sReé2 /Gr,

where Re = 2*U_R/v, and is known as the
oscillation Reynolds number. Thus K expresses
the intensity of the effects of oscillation in terms
of the intensity of the buoyancy effects. The
parameter A can be written

_ R/Gr?
T 2iv/w)

and is a direct measure of the ratio of the thermal
and a.c. boundary-layer thicknesses. When 1 is
large the a.c. boundary layer is very thin com-
pared with the natural convection boundary
layer.

The solution of (7) and (8) is not immediately
dependent upon the Grashof number. However,
the parameter of practical interest, the Nusselt
number, is given by

Nu = %? = —GrtG/(0).

exp(—AE)(AE — 1) cos (AE — n/4).
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F1G. 2. The variable f(4iF) as a function of E. It should be noted that the E scale is
logarithmic.

Another parameter used by Richardson is a
streaming strength parameter

¢ = 4Re /Gr,

where Re, = UZ /wv, the streaming Reynolds
number; Re, is also given by a’w/v, where a is
the amplitude of oscillation; thus Re is the
square of the ratio of this amplitude to the a.c.
boundary-layer thickness. In terms of the present
parameters,

¢ = Re2 /Gri* = K/2A%

The boundary conditions to which (7) and (8)
are subject are that the velocity shall vanish at
the surface of the cylinder, the azimuthal velocity
component shall vanish at large wall distances*
and the temperature shall have specified values
at the surface and far from it. In terms of the new
variables, these boundary conditions are

F=F =0, G=1 at E=0,

9
F -0, G->0 at E - oo.

* It will be noticed that F' represents the azimuthal
component of the mean velocity, and that (by application of
the continuity equation) F is proportional to the normal
component. As a result of the averaging process, the fluctua-
tions do not appear in the boundary conditions.

The results of computations for the solutions
of equations (7)9) display so many of the charac-
teristics which have been observed qualitatively
in experiment that it was decided to extend the
solutions by using series expansions of sin(x/R)
and cos (x/R) instead of the one-term approxi-
mations, valid as x/R — 0, used in equations (7)
and (8). These added terms give rise to modifi-
cations of the solutions of (7)+(9) in the azimuthal
direction. However, these modifications are of
magnitudes rather than of basic flow patterns
and discussion of the extended solutions is
deferred so that only the basic solutions are
presented here.

3. COMPUTATIONAL PROCEDURE

Equations (7)+9) represent a two-point
boundary-value problem. Solution is rendered
difficult because two boundary values are not
known a priori—the values of F” and G’ at the
wall. The usual procedure for the solution of such
problems is to guess values for the two unknowns
at the wall, to make a step-by-step integration
of the equations and to correct the guessed values
iteratively until the specified conditions are
satisfied at “infinity”. For boundary layers, an
acceptable “infinity” is mercifully close to the
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wall. Here, an adaptive approach for specifying
infinity was used. Initially a value of E_ = 160
was specified, and values of F"'(0) and G'(0) found
such that

|F'(0)] < &,,|G(0)| < &, (10)

were satisfied. The values of F''(c0) and G'(o0)
were then examined, and if they were not smaller
than a second bound &,, the value of E_ was
increased (by 1-0) and the integration repeated.

If the values of F”'(0) and G'(0) were not close
to their correct values, intermediate results
became obviously incorrect. Gross corrections
to the starting values were made until an integra-
tionto E_ could be obtained without catastrophe.
Small changes were then made to the starting
values, a second complete integration obtained,
and iterpolation used to force equation (10) to
be satisfied.

Probably as a result of the coupling of equa-
equations (7) and (8), the response of F'(o0)
and G(co) to changes in F'(0) and G'(0) is some-
what unexpected. A typical situation is shown in
Fig. 3, where, for a particular set of values of the
parameters, the values at “infinity” of F', F”, G
and G’ are plotted against F’(0) and G'(0). It
can be seen that F'(co) is almost independent of
F’'(0), but very sensitive to G'(0). (This situation
does not exist unless F’(0) and G'(0) are close
to their correct values.) Thus, interpolation from
two successive values of F'(c0) to improve the
estimate of F”(0) is not successful. However, it
was found entirely satisfactory to adjust G'(0)
until F'(co) satisfied equation (10), adjust F”(0)
until G'(c0) satisfied equation (10), and repeat
both processes until the two conditions in
equation (10) were satisfied simultaneously. Ata
later stage in the computations a different itera-
tion scheme for controlling convergence was
tried, using a technique somewhat similar to that
described by Nachtsheim and Swigert [10].
The same convergence criteria were used with
both iteration schemes. The results were virtually
identical, of course, the latter iteration scheme
giving a larger range of convergence.

The integration of equations (7) and (8) was
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achieved by replacing them by a set of five first-
order equations, and usinga fourth-order Runge—
Kutta computer-library subroutine. A step size
in E of 0-001 up to E = 0-5, and of 0-05 thereafter,
was found sufficient in order to ensure conver-
gence (in the sense that the solution becomes in-
dependent of further reductions in step size).
This was particularly true with large values of 4,
for which rapid fluctuations occur in f(AE) at
small values of E. The convergence criteria
adopted were &, = 0-0001 and ¢, = 0-0005.

4. RESULTS FOR THE FIRST-ORDER EQUATIONS

Solutions of equations (7)9) have been com-
puted within the following ranges of variables,
allfor Pr = (-7 and for vertically and horizontally
propagated sound fields:

5€4<50
0 < K < 2000,

the maximum range examined of the streaming
strength parameter K being so that the corres-
ponding range of the streaming strength para-
meter ¢ is 0 < ¢ < 2'5. This range of variables
was chosen primarily to correspond with some

G. DE VAHL DAVIS and P. D. RICHARDSON

experimental data, but also to explore somewhat
the effects of A. In addition, some solutions were
obtained for Pr = 2:85,4 = 6,0 < ¢ < 50 which
are of interest for a possible mass-transfer experi-
ment.

There is a great effect of the Reynolds stresses
on the flow pattern. These effects are illustrated
in graphs of the velocity and temperature distri-
butions, Figs. 4-9, for A’s in the vicinity of 20,
together with corresponding graphs for undis-
turbed natural convection. The boundary layer
really involves two characteristic thicknesses, one
being characteristic of the Reynolds stress distri-
bution (see Fig. 2) and the other of the natural
convection. To display the effects in both layers
in similar detail it has been convenient to use
semi-logarithmic coordinates for the graphs.
Regions of flow reversal can be identified easily
(F' < 0). The temperature gradients, G, through
the regions of greatly changed flow (E < 0-3, say)
are very nearly constant, showing that in this
region conduction is far more significant than
convection. Figures 10 and 11 also help to
give some perspective on the results: both are
for vertical oscillations. Figure 10 illustrates
that changes in the temperature gradient at the

2:0

05 S R —

|
No oscillations

)
00l O

-0 10-0

F1G. 4. Variables obtained in solution of the momentum and energy equations

for steady natural convection in the absence of oscillations. The space variable

has been plotted on a logarithmic scale to facilitate comparison with the corre-
sponding solutions in the presence of oscillations.
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F1G. 9. As Fig. 8, but with ¢ increased to 1-0.
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F1G. 10. Computed temperature gradient at the wall, G'(0),  Fic. 11. Temperature profiles for various & with vertical
and skin friction, F"(0). oscillations.
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FiG. 12. (a) Natural convection, no sound. (b) Vertical sound field, A = 238,z = 4 Res/Gr* = 014.

(c) Horizontal sound field, A = 30, ¢ = 0-10. The values of E in the range of these graphs is small

and shows mainly what happens in the oscillating boundary-layer region. The numbers on the
stream-lines are values of the stream function.

wall, G’(0), and in the skin friction, F"'(0), are
almost linear with ¢ when ¢ is small; however,
over the range of ¢ shown, the heat-transfer rate
decreases by about one-half while the friction
increases by about 13 times. Figure 11 shows
how the temperature profile changes; the profiles
have smaller slopes near the origin as ¢ is in-
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1-5- P51

£ I

2.0

€=0

€=0-3

creased, but the relative shift of the profiles
seems to remain almost constant for E > 1.

The motion is most vividly displayed by
charts of the streamline distribution. A chart of
the streamlines which result from the imposed
oscillations, in the absence of buoyancy, has
been shown in Fig. 1. The streamline patterns

€=07 €=1-0

F1G. 13. Vertical sound field, 4 = 23-8. The streamline patterns illustrate the growth of a reversed flow bubble at the
bottom of a heated cylinder as ¢ is increased from 0 to 1-0.
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for the combined effects of buoyancy and
Reynolds stresses can be computed from the
solutions of equations (7)+9), since

4

o, = LFD).

Streamlines computed in this way for F(E)
are shown in Figs. 12 and 13. The solution F(E)
is asymptotically valid as £ — 0, and to empha-
size this the streamlines have been shown only
within 30° from the origin. The charts have been
plotted in polar coordinates which give the
boundary layer the appearance of extending
over a large radius-ratio. This is convenient
for examining streamline behaviour, but should
not be used for literal interpretation as the
physical plane: the boundary layer assumptions
used require that the boundary layer be thin
compared with the cylinder radius.

The principal features of the streamline pat-
terns should be noted. For very weak sound fields
the flow pattern is hardly changed at all.
Once ¢ becomes sufficiently large, however, at
least one region of reversed flow ~develops. (A
region of reversed flow is one having closed
streamlines, or which contains regions where the
azimuthal component of velocity is negative.)
For horizontal oscillations, thisregion of reversed
flow is confined to a small range of E and corre-
sponds to the inner streaming motion of the
isothermal case. For vertical oscillations two
regions of reversed flow are found. There is one
small region close to the wall, similar to that
found with horizontal oscillations but opposite
in direction. The other region of reversed
flow is more extensive, and grows rapidly with
increasein &. The outer acoustic streaming pattern
associated with isothermal vertical oscillations
involves a radial outflow at ¢ = 0; if this outflow
were hot, so that it had buoyancy which opposed
its motion, it might be expected to stop its
descent at some point and turn to move azi-
muthally round the cylinder. Thus the flow
pattern found in the computer solution at larger
¢ corresponds qualitatively to what could be
expected by superposition of buoyancy effects
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on the isothermal acoustic streaming pattern.
The same comment can be applied to the results
for horizontal oscillations. The presence of
regions of reversed flow is found in the first-
order solutions only when a sufficient value of ¢
is reached, this value depending upon A and the
direction of the applied oscillations. This suggests
by itself that there may be critical conditions
involved, i.e. that there is a critical ¢ for the onset
of reversed flow. An examination of the flow field
with higher-order equations taken into account
indicates that the reversed flow develops first
near the stagnation point and grows into the
region £ > 0 as ¢ increases.

The most dramatic changes in the flow pattern
occur at values of E where the flow velocities are
small, and pure conduction largely smothers
changes in the convective pattern, so that the
isotherms appear to be relatively insensitive
to the flow changes. For the solutions of the
first-order equations the isotherms are simply
circular, and do not reveal interesting features
when seen in a polar graph.

One is tempted to suggest that the flow patterns
must tend to those of simple acoustic streaming
as € — oo, because this presents the situation
where buoyancy effects become negligible. How-
ever, the ratio of the orders of magnitude of the
inertia terms to the Reynolds stress terms is
¢/A*, and it is only when this ratio is very small
that the streaming motion can be expected to
follow the pattern described by Stuart [4]. The
requirement that ¢/A* < 1 corresponds in physi-
cal terms to the requirement that a/d < 1. If the
computer solutions are examined as & —» co with
A held constant, the flow patterns cannot be
expected to tend to those of Stuart. Some com-
putations were made to assess quantitatively
the effects of finite /A% in the solution of the
momentum equation with the buoyancy term
(G) omitted. These showed that the magnitude
of the wall shear stress increases beyond that
associated with Stuart’s asymptotic analysis,
and that the flow at large E corresponds closely
to the exponential decay in Stuart’s solution
when the origin of his { variable coincides with
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that of E as used here. The maximum velocity,
(F'/¢), in the outer streaming is slightly dimin-
ished; for ¢/A? = 0-001596 the maximum velocity
was about 0696, and for g/4* twice as large
(e =1, 4 = 17-7) it fell to about 0-664. A conse-
quence of these changes in the velocity is that
the separating streamline between the inner
and outer streaming motions moves away

Table 1a. A = 50, Pr = 0-7; Horizontal sound field boundary
values

e G'(0) F"(0) F(0)
00 —0:37023 0-85935 1-3484
005 —0-37707 042433 1-3537
010 —0-38382 — 170910 1-3603
020 —039709 —4:28201 1:3744
030 —0-41006 — 685926 13856
0-40 — 042275 — 944058 1:3961
050 — 043517 ~ 1202581 14078
060 — 044735 1461477 1-4213
0-70 — 045929 — 1720734 1-4333
080 ~047100 ~ 1980339 1-4453
090 — 048250 — 2240288 1-4540
1:00 — 049379 — 2500552 1-4671
120 —0-51580 ~3022008 1-4940
1:40 —0-53709 — 3544650 1-5194
1:60 —0:55772 — 4068411 1-5473
1:80 —0:57775 — 4593234 1-5730
2:00 —0-59719 — 5119048 1-6024
220 —0:61609 — 5645839 1-6297
240 — 063449 — 6173547 1-6591

Table 1b. A = 50; Pr = 0-7; ¢ = 1-0; Horizontal sound field

E F F G G
00 00 00 100000 —0-49380
001 —000084 —012954 099506 —0-49380
002 —-000192 -005826 099012 —0-49380
003 —000163 0-12854 098519 —049381
0-04 0-00076 0-34675 098025 —0-49381
0-05 0-00522 0-53749 097531 —0-49380
0-07 0-01848 075107 096543 —0-49372
0-10 0-04189 077757 095063 —0-49341
015 007947 073794 092598 —0-49236
0-20 0-11630 073502 090140 —0-49068
0-25 0-15290 072800 087692 —0-48837
0-35 0-22508 071419 082839 —0-48195
0-50 0-33024 068700 075707 —0-46808
1-:00 0-64527 0-56781  0-54011 —0-39393
2:00 1-08261 0-31499  0-23890 021199
4-00 1-40323 006119 003495 —0-03510
6-00 1:45860 0-00912 000457 —0-00468
800 1-46649 000122  0-00058 —0-00060
10-00 1-46749 0-00014 000007 —0-00008
12:00 1-46758 000001 000000 —0-00001
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Table 1c. A = 50; Pr = 0-7; & = 2-4; Horizontal sound field

E F F' G G
0-0 00 00 1:00000 —0-63449
001 —-000211 —0-32805 099366 —063450
002 —-000495 —0-17397 098731  —0-63451
003 —0-00467 0-25748 098096 —0-63454
004 0-00045 0-76449 097462  —0-63455
005 001040 1-20574 096827 —0-63452
007 0-04023 1-68587 095559  —-0-63431
0-10 0-09220 1-70283 093657 —0-63343
015 0-17240 1-53592 090496  —0-63048
020 024737 1-46383 087355 —0-62586
025 0-31872 1-39019 084240 —-0-61969
035 0-45081 1-:25416 078122  —0-60317
0-50 062518 107547 069312 —0-56991
100 1-04639 0-64588 044376  —0-42272
2-:00 1-44984 022939 0-15818  —0-17228
400 1-63807 002559 001632 —0-01897
6-00 1-65788 000232 000150 —0-00188
8-00 165934 0-00003 000004 —0-00018
10-00 165919 ° —0-:00007 —0:00010 —0-00002
12-00 165914 0-00005 —-0-00012 —0-00000
Table 2a. A = 250; Pr = 0-70; Horizontal sound field
boundary values
£ G'(0) F'(0) F(o0)
00 —0-37023 0-85935 1-3484
0-05 —0-37648 020070 1-3532
0-10 —0-38266 —0-45891 1-3595
020 —0-39476 —1-78099 13718
0-30 —0-40657 —3-10672 1-3834
0-40 —0-41809 —4-43592 1-3942
0-50 —042934 —5-76847 1-4016
0-60 —0-44034 —7-10401 1-4181
070 —045111 —8-44265 1-4297
0-80 —-046165 —9-78421 1-4416
090 —047198 —11-12856 1-4531
1-00 —0-48209 —12:47558 1-4654
1-10 —0-49201 —13-82524 1-4743
1-20 —0-50175 —15-17730 1-4897
1-40 —0-52071 —17-88882 1-5106
1-60 —-0-53898 —20-60936 1-5351
1-80 —0-55668 —23-33855 1-5597
2:00 —0-57380 —26:07590 1-5834
2-50 —0-61433 —32-95189 1-6586

somewhat from the cylinder surface compared
with ¢/A> - 0. However, at the appropriate
limits the computed results are in accord with
previous results.

All computed results are represented in the
set of tables, Tables 1-13. These list all boundary
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Table2b. A = 250;Pr = 0-70;¢ = 1-0; Horizontal soundfield Table 3b. . = 250; Pr = 070; € = 0'5; Vertical sound field

E F F G G’ E F F' G G’
00 00 00 1-00000 —0-48209 00 00 00 1-00000 —0-30237
001 —0-00052 —-009386 099518 —048209 002 0-00107 0-08715  0-99395 030237
0-02 —0-00168 —-0-12903 099036 —-048209 004 0-00281 007345 098791 - 0-30236
0-04 —0-00382 —005756 098072 —-048211 006 0-00362 000158 098186 —0-30235
007 —0-00138 023854  0-96625 —0-48215 008 000277 —0-08643 097581 —0-30233
0-10 0-01047 0-53698 095179 —0-48211 010 0-00025 —-0-16113 096976 —0-30233
015 0-04454 0-76890 0-92769 —0-48166 015 —-0-01019 —0-22847 095465 —0-30237
025 0-12116 073777 087964 —-0-47886 020 —0-02071 —0-18376 093952 —0-30254
050 0-29950 069233 0-76181 —0-46149 0-25 -0-02836 —0-12377 092439 —0-30280
10 061786 0-57554 0-54682 —0-39237 0-30 —0-03330 —0-07585 090924 —0-30313
20 1-06346 0-32292 0-24444 —0-21462 0-35 —0-03605 —0-03462 0-89408 —0-30350
50 1-43723 002584 001337 —0-01340 0-40 —0-03680 0-00453 0-87889 ~-0-30389
80 1-46343 000172 000079 —-0-00063 050 —0-03263 0-:07757  0-84847 —0-30464
120 1-46539 —0-00003 0-00018 —0-00001 0-70 —0-00440 0-19946 0-78743 —~0-30552
1-00 007618 0-32751 0-69596 —0-30343
2:00 0-48424 0-42317 0-41297 - 025068
500 120123 0-08176 0-04024 —0-03521
800 129412 0-00673 000272 —0-00247
12-00 1-30096 0-00000 0-00008 -0-00006
Table2c.h = 250;Pr = 0-70; € = 2-5; Horizontal sound field
E F F G G Table 4a. 1 = 23-8; Pr = 0-7: Vertical sound field boundary
values
00 00 00 100000  —061433
001  ~000139  —025219 099386  —0-61433 € G'0) F(0) F(ec)
0-02 —0-00455 —0-35753 0-98771 —0-61434
004 — 001093 ~021319 097543 — 061441 00 -0-37021 085932 1-3415
007  —000768 047679 095699  —0-61456 014 —0-35246 2:61417 1:3517
010 001762 1117416 093855  —0-61451 0-18 —0:34723 311399 1-3447
015 009244 167691 090785  —0-61338 0-20 —0-34455 336352 1:3250
0-25 0-25254 1-46540 0-84683 — 060592 0-225 —0-34124 367535 1-3256
05 0-57220 112217 0-70009 —~0-56307 0-250 —0-33788 3-98681 1-3163
10 101142 067326 045181  —0-42401 0275 —0-33451 429800 13127
2:0 1-43242 0-24007 016294 —0-17584 0-300 —0-33117 460911 1-3339
50 1-64843 0-00955 0-00555 —000623 0-400 -031725 5-84956 12980
80 1-65755 0-00068 0-00033 — 000019 0-500 —0-30296 708499 1-3057
12:0 1-65856 0-00001 000016 — 000000 0-600 —0-28809 8:31466 1-2899
0-700 —0-27264 9-53804 1-2696
0-800 —0-25658 10-75460 1-:2663
0900 —0-23980 1196348 1-2800
1-0 —022213 13-16345 12656

Table 3a. A = 25-00; Pr = 0-70; Vertical sound field boundary

values

g G'(0) F"(0) F(o0)
0-0 —0-37023 '0-85935 1-3484
005 -~ 036389 151699 1-3435
01 -0-35746 2-17356 1-3376
02 —0-34433 3-48350 1-3290
03 —-0-33079 478881 1-:3178
04 —0-31681 608921 1-3081
05 —0-30237 7-38431 1-3010
06 —0-28741 867359 1-2893

values determined, together with a very small
sampling of velocity and temperature profiles.

5. COMPARISON WITH EXPERIMENTS

The most important characteristic of these
computations is that they are closely similar to
the results found in related experiments [ 11-13].
Thus, in both theory and experiment, horizontal
oscillations increase heat transfer at the bottom
of the cylinder and vertical oscillations decrease
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Table 4b. L = 23-8; Pr = 0-7; € = 0-5; Vertical sound field

E F F G G

00 0-0 0-0 100000  —0-30296
0-02 0-00105 0-08664 099394  —0-30296
0-04 0-00284 0-08014 0-98788  —0-30295
0-06 0-00387 001694 0-98182  —0-30294
0-08 0-00339 —0-06577 097576  —0-30292
0-10 0-00130 —0-14035 096971  —0-30291
015 —0-00840 —022126 095456  —0-30294
0-20 —0-01886 —0-18634 093941  —0-30309
0-25 —0:02666 —0-12678 092425  —0-30333
0-30 —0-03166 —0-07606 090907 —0-30364
0-35 —-0-03440 —0-03421 089388  —0-30400
0-40 —-0-03513 0-00476 0-87867  —0-30437
0-50 —-0:03095 007764 0-84820  —0-30509

070  —0-00271 0-19950 0-78708  —0-30589.

1-00 0-07786 0-32744 069551  —0-30369
2:00 0-48568 042278 041244  —0-25062
500 1-20191 0-08180 0-04011  —0-03513
8-00 1-29558 000712 000279  —0-00246
12: 1-30424 0-00050 0-00006  —0-00006
16:00 1:30599 000034 —000001  —0-00000

Table 4c. . = 23'8; Pr = 0-7; € = 1:0; Vertical sound field

E F F G G

0-0 0-0 0-0 1-00000 —0-22213
0-02 0-00189 0-15335 099556  —0-22213
0-04 0-00489 0-12082 099111  —0-22212
0-06 0-00597 —0-02472 098667  —022210
0-08 0-00365 —0-20887 098223  —0-22208
0-10 —0-00227 —037636 097779  —022208
0-15 —-0-02757 —-0-58213 0-96668  —0-22219
020 —0-05650 —0-55337 095557 —0-22252
0-25 —0-08210 —0-47109 0-94443  —0-22306
0-30 —0-10394 —0-40613 093326  —0-22379
0-35 —0-12294 —0-35488 092204  —0-22468
0-40 —0-13947 —-0-30676 091079  —-022572
0-50 —0-16542 -0-21307 0-88810  —0-22815
070 —0-19084 —0-04577 0-84190  —0-23400
1-00 —-0-17316 0-15349 077028  —0-24337
2:00 0-16558 0-44013 051953  —0-24805
500 1-09248 0-13107 0-06651  —0-05476
8:00 1-29091 001286 0-00499  —0-00441
12:00 1-26535 0-00036 0-00013  —0-00013
1600 1-26564 000000 —000001  —0-00000

the local heat transfer. Corresponding changesof
thermal boundary layer thickness are predicted
and observed. In addition, observations have
been made for vertical oscillations which sug-
gested the presence of a “bubble” of reversed
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Table 5a. A = 20; Pr = 07; Horizontal sound field boundary

values
£ G'0) F(0) F(c0)
00 —0-37023 0-85925 1-3421
005 —0-37619 0-32583 1-3497
0-10 —0-38209 —-0-20853 1-3568
020 —0-39363 —1-27992 1-3683
0-30 —0-40487 —2-35471 13771
0-40 —0-41583 —3:43256 1-3919
0-50 —0-42653 —4-51357 1-4003
0-60 —0-43697 — 559742 1-4113
0-70 —0-44718 — 668394 1-4274
0-80 —045716 -777321 1-4379
0-90 —0-46693 —8-86510 1-4455
1-00 —0-47650 -995925 1-4628
Table 5b. A = 20; Pr = 0-7; € = 1:0; Horizontal sound field
E F F G G’
00 0-0 00 1:00000 —0-47650
002 —0-00147 -0-12122 099047  —0-47650
0-04 —0-00392 —0-10453 098094  —0-47652
0-06 - 000500 0-00902 097141  —0-47655
0-08 —000323 0-17311 096188  —0-47658
0-10 000199 0-34733 095235  —0-47659
0-15 0-02837 0-67111 092852  —047636
020 006535 0-77789 090472  —0-47558
025 0-10422 076737 088097 —0-47417
0-30 014181 0-73730 085731  —0-47213
035 0-17817 071946 083377  —0-46950
0-40 0-21390 0-71064 0-81037  —046628
0-50 0-28423 0-69505 076413  —0-45822
0-70 041917 065303 067457  —0-43616
1-00 0-60426 0-57936 055012  —0-39157
2:00 1-05389 0-32675 024719  —0-21593
500 1-43362 002647 001364 —0:01364
8-00 1-46059 000181 000081  —0-00065
12-:00 1-46274 0-00001 000019  —0-00001
Table 6a. . = 20; Pr = 0-7; Vertical sound field boundary
values
& G'(0) F'(0) F(o0)
0-0 —0-37023 0-85935 1-3484
01 —0-35803 1-92345 1-3372
02 —0-34546 2:98360 1-3287
03 —-0-33249 4-03948 1-3183
04 —0-31908 509085 1-3126
05 —0-30521 613721 1-3033
06 —0-29081 7-17818 1-2915
07 —0-27584 821333 1-2876
0-8 —0-26022 9-24187 1-2764
09 —0-24386 1026313 1-2687
10 —0-22666 11-27608 1:2636
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Table 6b. A = 20; Pr = 07; ¢ = 1:0; Vertical sound field

E F F G G’
0-0 0-0 0-0 1-00000  —0-22666
0-02 0-00173 0-14716 0-99547  —0-22666
0-04 0-00496 0-15563 099093  —0-22665
0-06 0-00730 0-06646 0-98640  —0-22663
0-08 0-00727 —-0-07399 098187  —0-22661
010 0-00427 —0-22529 097734  —0-22659
015 —001463 —0-49472 096601  —0-22662
0-20 —004151 —0:55055 0-95467  —0-22684
0-25 —~0-06779 —0-49156 094332 022728
0-30 —0-09042 —-0-41512 093194 —022791
0-35 —0-10956 —0-35309 092052  —-0-22871
0-40 -012592 —0-30247 090507  —0-22966
0-50 —0-15152 —-021047 0-88599  —0-23191
0-70 —0-17644 —0-04332 083908  —023739
1-00 —0-15813 0-15519 076653  —0-24613
2:00 0-18025 0-43771 051430  —0-24821
500 1:09608 0-12855 006517 —005378
8-00 1-25063 0-01227 0-00485  —0-00432
12:00 126358 0-00010 0-00009  —0-00013
13-00 1-26356 ~0-00009 0-00000  —0-00005

Table 7. A = 18-0; Pr = 0-7; Horizontal sound field

& G'(0) F(0) F(o0)

1-0 —0-47346 — 895042 1-4556

flow underneath the cylinder when the intensity
was large enough [13], corresponding to the
reversed flow region computed here.

However, it should be noted that at the highest
intensities achieved in the experiments with
vertical sound fields an oscillatory, unstable
motion was observed to develop in the bottom
stagnation region [13]. The framework used for
the analysis presented here precludes calculation
of instability of the secondary motion, and one
should not expect the close similarity between
analysis and experiment to persist to indefinitely
large values of ¢ (supposing that solutions were
computed that far). The experimental observa-
tions suggest that the next stage in development
of analysis should be to examine the stability
of the flow, as instability apparently can develop
at values of ¢ below those at which (with vertical
oscillations) the downflow jet would break out
of the boundary layer region and vitiate the
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Table 8a. A =177; Pr = 070; Horizontal sound field
boundary. values

€ G'0) F(0) F(cc)
0-0 —0-37023 0-85925 1:3415
0-05 —0-37603 0-38347 1-3519
01 —0-38172 —0-09320 1-3577
02 —0-39291 —1-04912 1-3691
03 —0-40379 —2:00815 1-3826
0-4 —0-41440 —297025 13932
05 —0-42474 - 393520 1-4047
0-6 —0-43483 —490292 1-4142
07 —0-44469 —587323 1-4263
08 —0-45432 —6-84614 1-4327
09 —0-46374 —782136 1-4441
10 —0-47296 —8:79890 1-4563
11 —0-48199 —9-77865 1-4677
12 —0-49084 —10-76063 1-4769
13 —0-49951 — 1174465 1-4888
1-4 —0-50801 —12:73065 1-:5009
1-5 —0-51634 — 1371858 1-5149
1-6 —0-52453 —14:70840 1:5271
1-7 —0-53256 — 15-70009 1:5393
1-8 —0-54045 — 1669354 1-5513
1-9 —0-54821 — 1768874 1-5632
20 —0-55583 —18-68558 1-5757
21 —056334 —19-68420 1-5838
22 -0-57071 —20-68434 1-5962
23 —0-57796 —21-68599 1-:6096
24 —0-58507 —22-68907 1:6235
25 —0-59209 —23-69370 16376

Table8b. A = 17-7;Pr = 0-70; & = 1-0; Horizontal sound field

E F F G G
00 00 00 100000  —0-47296
0-02 —0-00135 ~0-11466 099054  —047297
0-04 —0-00384 —0-11820 098108  —0-47298
0-06 —0-00551 —0-03765 097162  —0-47302
0-08 —0-:00500 0-09470 096216  —047305
0-10 —0-00159 0-24835 095270 —0-47308
015 0-01982 0-58501 092905  —0-47295
0-20 0-05394 0-75039 090541  ~047235
0-25 009255 077863 0-88182  —047114
0-30 0-13095 0-75442 0-85831  —0-46930
0-35 0-16798 0-72837 0-83490  —0-46685
0-40 0-20397 0-71281 0-81163  —0-46382
0-50 0-27436 0-69584 076562  —0-45611
0-70 0-40967 0-65513 067641  —043475
1-00 0-59543 0-58173 0-55225  —0-39105
2:00 1-04747 0-32893 024894  —-021679
5-00 1-42943 002618 001369 —0-01383
8-00 1-45500 000136 000064  —0-00066
12-00 1-45625 0-00002 —0-00000 —0-00001
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Table8c. A = 177;Pr = 0-70; € = 2:5; Horizontal soundfield  Table 11a.A = 50;Pr = 0-7; Horizontal sound field boundary

E F F G G
00 0-0 0-0 1-00000  —0-59209
0-02 —0-00371 —0-32029 098816 —0-59210
0-04 —0-01095 —0-36213 097632  —0-59216
0-06 —0-01678 —-0-19314 096447  —0-59228
0-08 —0-01781 0-10600 095262  —0-59243
0-10 —0-01219 0-45906 094077  —0-59256
015 003134 1-22608 091115  —0-59243
020 0-10306 1-56980 0-88155  —0-59106
025 0-18266 1-57658 0-85207 —0-58812
0-30 0-25870 1-45863 0-82277 —0-58358
035 0-32860 1:34231 079373  —~0:57760
0-40 0-39348 1-25785 0-76503  —0-57034
0-50 0-51307 1-13906 0-70885  —0-55249
0-70 0-71995 0-93472 0-60276  —0-50656
1-00 0-96229 0-69300 046295  —0-42401
2:00 1-39954 0-25228 0-17027  —0-18087
5-00 1-62864 0-00994 000591  —0-00673
8-00 1-63727 0-00038 000020  —0-00022

12:00 163763 0-00002 0-:00002  —0-00000

Table 9. . = 17-7; Pr =0-70; Vertical sound field boundary

values
£ G'(0) F'(0) F(o0)
00 —0-37023 . 085925 1-:3415
0-05 —0-36435 1-33429 1-:3417
01 —0-35839 1-80834 1-3381
02 —0-34619 2-75360 1-:3315

Table 10.A = 10:0; Pr = 0-7; Horizontal sound field boundary

values
e G'(0) F"(0) F(c0)
0010 -0-37114 0-80282 1-3324
0015 —0-37160 0-77460 1-3304
0020 -0-37204 0-74641 1-3265
0025 —-0-37252 0-71827 1-3325
0030 —-0-37299 0-69008 1-3368
0035 —0-37345 066185 1-3362
0040 —-0-37391 0-63362 1-3359

N.B. Convergence criterion 0-0005.

boundary layer assumptions used in the analysis.

The comparison between this analysis and the
available experiments cannot be carried further
to the quantitative level, because there are some
significant differences in some of the parameters.
The Grashof numbers in the experiments were

values
P> G'(0) F"(0) F(o0)
00 —0-37023 085935 1:3484
005 —-0-37273 0-70669 1-3501
010 —0-37518 0-55379 1-3567
020 —0-37990 0-24703 1-3663
030 —0-38441 — 006093 1-3742
0-40 —0-38873 -0-37001 1-3827
0-50 —0-39286 —0-68029 1-3851
0-60 —0-39682 —099146 1-3978
0-70 —0-40061 - 130377 1-4044
0-80 —0-40424 —1-61713 1-4070
090 —0-40772 —193130 1-4203
1-00 —041105 —2:24652 1-4270

Table 11b. A = 50; Pr = 0-7; & = 1-0; Horizontal sound field

E F F' G G’
00 0-0 0-0 1-00000 —0-41105
0-02 —0-00042 —0-04014 099178  —-0-41105
004 —0-00154 —0-07078 098356 —0-41106
0-08 —0-00517 —0-10471 096711 —041110
012 —0-00947 —0-10526 095067 —041118
016 —-001321 —-0-07726 093422 —-041131
020 —001535 —0-02635 091776  —0-41148
025 —001458 0-06054 089718 —041170
0-30 —0-00904 016284 087659  —(0-41187
040 001796 0-37524 083450 —041180
0-50 006482 0-55297 079427  —0-41065
070 0-19670 072496 071275  —-0-40336
1-00 0-41140 067342 059509 —0-37829
20 092376 0-38138 028611  —0-23318
40 1-33185 0-08407 004672  —0-04489
8-0 142428 000239 000105  —0-00089

120 1-42698 0-00000 000018  —0-00002
Table 12a. A = 6:0; Pr = 2-85; Horizontal sound field
boundary values
e G'0) F'(Q) F(o0)

00 —0-60047 0-68998 0-7937
0-01 —0-60218 0-65407 07952
01 —-061714 0-33041 0-8089
03 —0-64766 —0-39201 08416
05 — 067467 —1-11868 0-8768
10 -072902 —2:95341 09671
15 —0-76841 —4-81263 1-0533
2:0 —-0-79674 — 669460 1-1336
25 —081671 —8:59773 1-2048
30 —-0-83024 —10-52043 1-2746
35 —0-83866 ~12-46177 1-3359
40 —0-84303 — 1442074 1-3915
45 —0-84395 —16-39656 1-4440
50 —0-84202 —18-38878 1-4912
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Table 12b. A = 6:0; Pr = 2:85;¢ = 00
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Table 12¢. & = 6:0; Pr = 2:85; ¢ = 5:0; Horizontal sound field

E F F'. G G’ E F F G G’
0-0 00, 0-0 100000  —0-60047 00 0-0 0-0 1-00000  —0-84202
002 0-00014 0-01360 098799  —-060047  0-02 —0-00344 —0-33205 098316  —0-84208
0-05 0-00084 0-03326 096998  —0-60045 0-05 —0-01929 - 0-69861 095789  —0-84283
0-10 0-00329 0-06410 093996  —0-60028 0-10 —0-06298 —0-98589 091565  —0-84764
0-20 0-01251 0-11882 087998  —0-59901 0-20 —0-15258 —0-64483 0-82972  —0-87482
0-40 0-04521 0-20279 0-76092  —0-58971 0-40 —0-09750 1-17556 0-64623  —095642
0-60 009166 0-25735 064497  —0-56744  0-60 0-23273 1-86971 045495  —092627
1-0 0-20561 0-29988 043373 —047976 10 0-82851 1-01850 016525  —0-48814
20 047759 022179 010927  -0-17765 2:0 1-33939 0-22470 0-00475  —001870
30 0-64326 0-11602 001796  —0-03507 30 1-45622 0-05074 000008  —0-00033
50 0-76294 0-02488 0-00027  —0-00059 50 1-48869 0-00270 —0-00000  —0-00000
80 0-79127 000223 -0-00000 —0-00000 80 1-49075 0-00016 —0-00000 —0-00000

12:0 0-79372 000001 —0-00000 —0-00000 120 1-49124 0-00013 —0-00000 —0-00000

Table 12¢. ) = 6:0; Pr = 2:85; ¢ = 1-0; Horizontal sound field

E F F G G
0-0 0-0 0-0 100000  —0-72902
0-02 —0-00054 —0-05208 098542  —0-72902
0-05 —-0-00297 —0-10450 096355  —0-72912
0-10 —0-00911 —0-12882 092708  —-0-72974
0-20 —-001714 —0-00114 0-85397  —0-73270
0-40 002911 0-45355 070703  —0-73346
0-60 0-14502 0-64872 056299  —0-69923
10 0-38255 0-50392 0-31661  —0-51443
2:0 0-72916 0-22254 004353  -0:09886
30 0-87495 0-08809 0-00379  —0-00974
50 0-95338 0-01290 0-00001  —0-00005
80 096610 0-00077 —000000 —0-00000

120 0-96709 000009 —000000  —0-00000

Table 12d. ) = 6-0; Pr = 2-85; & = 2'5; Horizontal sound field

E F F G G’
0-0 00 00 1-00000  —0-81671
0-02 —0-00042 —0-15419 098367 —081674
0-05 —0-00891 —-0-32011 095916  —0-81708
010 -0-02859 —0-43598 091826  —0-81921
0-20 -0-06513 —0-21548 083584  —0-83067
0-40 —0-00823 076876 066668  —0-85645
0-60 0-19783 1-15854 049797 —0-81437
10 0-58959 073999 022767 —0-51081
20 1-01832 0-22702 001505  —0-04604
30 1-15055 0-06819 000057  —000202
50 1-20156 000579 —000004  —0-00000
80 1-20555 -0-00010 —0-00004 —0-00000
120 1-20483 —0-00014 —0-00004  —0-00000

Table 13a. Solution of F” — F? + FF” — Kf(AE) = 0;

A=177;e =05
E F F F
0-0 0-0 00 —4:63050
0-01 —0-:00021 -003851 —3-07906
0-02 —0-00072 —0-06185 —1-60808
0-04 -0:00210 —006794 0-88209
0-06 —0-00316 —0-03180 2:59492
0-08 —-000320 0-03044 3-49966
0-10 - 0-00187 0-10351 370521
017 0-01328 0-30392 1-65953
0-24 0-03681 034743 —0-12282
0-35 0-07302 0-30875 —0-31327
0-50 0-11683 027927 —0-15332
1-00 0-23794 0-20821 —0-12300
2:00 0-39516 0-11531 —0-06816
5-00 0-55700 0-01948 —0-01161
10-00 0-58758 0-00082 —0-00061
12:00 0-58836 0-00010 —0-00019

Entries of (F'/e) here and in part ¢ of this Table can be
compared; they are both for the same value of ¢/A2, but for
different A. The comparisons should be made at values of E
which correspond to the same 7.

finite, so that the natural convection results were
not sufficiently close to the asymptotic, bound-
ary-layer solution for differences to be ignored;
and the streaming Reynolds numbers were small,
rather than large. It is possible to extend the
analysis to account for these differences, as is
discussed below.

It is interesting to note that the velocities in
the flow reversal region close to the cylinder
surface are sufficiently small for conduction to
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Table 13b. Solution of F” — F'? + FF" — Kf(AE) = 0;  Table 13d. Solutionof F*" — Kf(AE) = 0;A = 25;& = 09975
A=177;¢ =10 (Limiting case, Re, — 0)
E F F F" E F F F'  f(AE) - 05
00 00 0-0 —9-40725 00 00 00 — 1246864 0-0
001 —0-00042 —007849 —6:30437 001 —000052 —0-09381 —634942 —002661
002 -0-00147 —0-12663 —3-36237 0-02 —0-00168 —0-12899 —0-82066 —009129
0-04 —0:00432 —0-14173 1-61816 0-04 —000381 —0-05760 721326  —0-26952
006 —0-00657 -007236 504419 0-06 —0-00322 0-12909 10-73745 —044163
008 —000687 0-04920 685411 008 000155 034720 1057931  —0-56027
010 —0-00446 0-19245 7-26580 0-10 0-01048 0-53797 827387 —0-61449
017 0-02446 0-58328 3-17944 017 006037 079027  0-19884 —0-54073
024 006946 0-66092 —037314 024 011474 075749 —0-44998  —0-49221
035 013742 0-57085 —0-73066 035 019701 074699 003499  —0-50028
0-50 021698 049814 —0-38696 0-50 0-30921 074812 000129 —049997
1-00 042154 0-33069 -027226 1-00 0-68326 0-74809 000000 —0-50000
2:00 0-64688 014517 —011952 500 3-67559 074809 000000  —0-50000
500 0-80825 001226 —001012 12:00 8-91215 0-74809 000000  —0-50000
10-00 082278 0-00017 —0-00017
12-:00 0-82282 0-00001 —0-00003
logical importance. Until very recently, it was
Table 13c. Solution of F" — F? + FF" — KfAE)=0; Dot possible to compare experimental results
A =25; ¢ = 09975 with any analysis based upon an acceptable
; fluid-mechanical representation. This paper pre-
E F F F* L
sents the first analysis, within the framework of
00 00 00 - 1304763 boundary-layer theory, which predicts effects of
001 —000055 — 009960 —692839 large magnitude (i.e. changes in heat transfer by
002 —0:00180 —0-14057 —1-39951 .
004 —0-00428 —0-08075 663493 a factor of up to 2 or SO) from the undisturbed
0-06 ~0-00426 0-09438 1015997 state, and for which there is experimental evi-
008 —000030 030095 10:00324 dence of changes in flow patterns and of local
010 000759 0-48023 7-70039 . e
017 0-05205 0-69310 — 035005 heat transfer in qualitative agreement.
024 0-09830 0-62317 — 096285 The nature and extent of this agreement
035 0-16279 055888 — 043191 encourages the hope that the analysis can be
0-50 024174 049415 —0-41346 .
100 0-44375 032561 ~027161 extended to reproduce the circumstances of
2:00 0-66459 014139 —0-11795 available measurements more precisely. This
500 082018 001155 —0-00966 requires solution of the Navier-Stokes equations
10-00 083370 0-00015 — 000015 . . e
1200 0-83381 0-00000 — 000003 directly rather than in their simplified (boundary

be the dominant mechanism of heat transfer:
the temperature profile through the flow reversal
region is extremely close to linear. This gives
support for the conduction correction Richard-
son used [2] for the inner streaming region in
his analysis of heat transfer by acoustic streaming
alone.

DISCUSSION

The effects of vibrations and oscillations on
time-averaged heat or mass transfer have techno-

layer) form: and this involves a large number of
boundary values for which iteration is required,
together with direct specification of the Grashof
number and the cylinder radius (hence some loss
of generality), and also modification of the outer
boundary conditions to allow for the range of
acoustic streaming at small streaming Reynolds
numbers. At small streaming Reynolds numbers
the effect of the inertia terms in reducing the
streaming motion is greatly reduced and it is
reasonable to expect a larger influence on heat
transfer; this would bring the analytical predic-
tions closer to the experimental data.
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There is a possibility of seeking experimental
evidence under conditions which more closely
approximate those prescribed for the analysis
than the experimental data now available.
The experiments should be performed by oscilla-
ting a cylinder of large diameter at relatively
low frequencies—a radius of about 10 cm is
suggested, oscillated at 50100 cps in air, say.
The low frequencies are useful in assuring that
the streaming Reynolds numbers are large,
and that the acoustic wavelength is much larger
than the cylinder diameter. The literature already
contains some overall heat-transfer data for
small cylinders (radius of the order of 1 cm)
oscillated vertically and horizontally in this
frequency range [ 14-16], and the data asymptote
toexpectation from isothermal streaminganalysis
at large Re,, but local data are needed for com-
parison with this analysis.

The use of a large cylinder diameter has the
advantages of reducing the value of (a/d) for a
given g, and of increasing the Grashof number
for a given cylinder temperature. Mechanical
oscillation of the cylinder would be required,
because it would not be possible at present to
produce a standing sound field of uniform
intensity at the very high amplitudes required.
For observation of local transfer rates it is
often more convenient to measure mass transfer
of naphthalene or paradichlorobenzene, and
some computations were performed for Pr =
2-85 to correspond to this.

A further extension of the work reported here
would involve solution of further pairs of
simultaneous ordinary differential equations
in the style of the sequence used by Chiang and
Kaye in a series representation of the flow and
temperature fields away from the bottom stagna-
tion point. Experiments indicate that the
“bubble” of reversed flow developed in a vertical
sound field closes by about one radian round the
cylinder from the bottom stagnation point, and
it would be rather gratifying if this could be
matched by analysis. However, this requires
extensive computer memory if it involves com-
putations through many pairs of equations in the

G. DE VAHL DAYVIS and P. D. RICHARDSON

sequence, and our computations with two further
pairs of equations suggested that convergence of
the series decreases as ¢ increases.

In more general terms, there are two impor-
tant considerations relating to future work on
the effects of vibrations and oscillations on
convective heat transfer. The success of the
results reported here, in comparison with experi-
ments, together with that of the analysis based
on acoustic streaming by itself [ 2], encourage the
belief that the formulation of the problem is
adequate. This formulation is based on the idea
that the stready convective motion is created
or modified by the Reynolds stresses associated
with the oscillating motion. The second con-
sideration is a practical one: with present digital
computer speeds and capacitiesthe time required
for computation is considerably greater than for
more simple, classical problems in boundary
layer theory and there is a need for some percep-
tive analytical procedures which could afford
useful results at lesser cost in further applica-
tions of the theory.
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CONVECTION NATURELLE DANS UN CHAMP SONORE

Résumé—On considére la convection naturelle autour d'un cylindre circulaire horizontal et isotherme
placé dans un champ sonore transversal qui se propage dans la direction verticale ou horizontale. Ce
probléme est traité dans le cadre de la théorie de la couche limite et on a tenu compte de la création ou de
la modification du movement permanent convectif par les contraintes de Reynolds associées aux oscil-
lations. Les résultats sont présentés pour un domaine de paramétres exprimant les caractéres de la couche
limite et les amplitudes des oscillations pour Pr = 0,7 et 2,85. Les oscillations horizontales accroissent le
transfert thermique a la base du cylindre et les oscillations verticales diminuent le transfert thermique
local; quand I'intensité des oscillations verticales est assez grande, il se développe une région d"écoulement
inverséé; les effets correspondants ont été observés expérimentalement.

FREIE KONVEKTION IN EINEM SCHALLFELD UND BEI GROSSEN
REYNOLDSZAHLEN

Zusammenfassung—Es wird die freie Konvektion um e¢inen horizontalen isothermen Kreiszylinder
betrachtet in Verbindung mit einem transversalen Feld stehender Schallwellen mit vertikaler bzw. horizon-
taler Ausbreitungsrichtung. Das Problem wird im Rahmen der Grenzschichttheorie behandelt unter
Beriicksichtigung der Erzeugung oder Veranderung der stationdren Konvektionsbewegung durch Rey-
noldssche Schubspannungen, die in Verbindung mit den Schwingungen auftreten. Die angefiihrten Ergeb-
nisse umfassen fir Pr = 0,7 und 2,85 einen Bereich von Parametern, die aus Grenzschicht- und Schwin-
gungsgrossen bestehen. Horizontale Schwingungen erhohen den Wirmeiibergang unten am Zylinder,
vertikale Schwingungen vermindern den ortlichen Wirmeiibergang; wenn die Intensitdt der vertikalen
Schwingungen gross genug ist, bildet sich ein Gebiet mit Stromungsumkehr aus; entsprechende Effekte
wurden in den Experimenten beobachtet.

BJIUAHUE AKYCTUYECKOTO IIOJ HA CBOBOJAHYIO KOHBERKIUIO

AunoTanma—PaccMaTpUBAETCH eCTeCTBeHHAA KOHBEKIMA BOJIM3M TOPMBOHTAIBLHOTO KPyro-
BOF0 M30TEPMHYECKOTO MIJIMHIAPA COBMECTHO C NONEPEYHBIM CTOAYNAM AKYCTHYECKUM MOJeM,
PacHpoCTPAHAKUIMMCA B BEPTUKAILHOM WJIM TOPM30HTAIBHOM HAMNpPAaBJIeHMM. 3ajava
paccMaTpMBAaeTCA B paMKaX TeOpMM TOFPAHMYHOIO CJIOA ¢ Y4YeTOM BO3HMKHOBEHHMS HIIU
M3MEHEeHNS] KOHBEKTHBHOT'O CTAMOHAPHOT [(BIKEHNUA B pe3yiibTaTe Hanpaxenuti PeliHoabxaca,
BHI3BAHHBIX KoJe6anuAmu. IlpefcraBiieHH pe3ynbTATH JJA [JMaNa3oHd M3MeHeHUA mnapa-
MEeTPOB NOTPAHMUYHOTO CJI0A U 3HaueHWt Konebaumit npu Pr = 0,7 u 2,85.

FopusoHTanpHEIE KONEGAHUA YCMIIMBAKOT TenjooCMeH y OCHOBAHMA NWJIMHApA, a
BEepPTUKANbHEIE YMEHBIIAWT JOKAJBHEI TeniaoobMeH.

Ilpu pocrarouyHo GoJBLION WHTEHCHMBHOCTH BepTHKAJbHBIX KojeGaHult pasBUBAETCA
o6nacTs oGparHOro Tedenus. CooTBeTcTByOmne ahderTH HAOTIOIATUCL DKCIEPUMEHTANILHO.



