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NATURAL CONVECTION IN A SOUND FIELD 

GIVING LARGE STREAMING REYNOLDS NUMBERS 
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Abstract- Natural convection around a horizontal circular isothermal cylinder is considered in conjunc- 
tion with a transverse standing sound field propagated in the vertical or the horizontal direction. The 
problem is treated within the framework of boundary-layer theory with the formulation including creation 
or modification of the steady convective motion by the Reynolds stresses associated with the oscillations. 
Results are presented for a range of parameters expressing boundary layer quantities and oscillation 
magnitudes for Pr = 0.7 and 2%5. Horizontal oscillations increase. heat transfer at the bottom of a cylinder, 
and vertical oscillations decrease the local heat transfer; when the intensity of vertical oscillations is large 

enough, a region of reversed flow develops; corresponding effects have been observed in experiments. 

1. INTRODUCTION 

AMONG the methods which have been proposed 
for achieving an economical increase in con- 
vective heat transfer rates from a surface, the 
use of oscillations in the fluid or vibrations of 
the surface has received considerable attention. 
Many experiments have been reported, with 
most results indicating an increase in heat 
transfer due to oscillations or vibrations. Until 
very recently there was no analysis which 
successfully accounted for any of the measure- 
ments on a satisfactory, fluid-mechanical basis. 
It is not expected that a single method of 
analysis will be adequate to explain all reported 
measurements, since there is strong evidence of 
effects in both laminar and turbulent flows, 
which usually must be considered separately. 
A review of the subject was presented recently 

PI* 
Richardson [2] considered the extensive 

measurements available for heat transfer from 
a horizontal heated cylinder which is supported 
in a transverse sound field or mechanically 

* On leave from the University of New South Wales, 
Kensington, Australia. 

vibrated transverse to its axis. He presented an 
analysis of the problem in which buoyancy 
forces were ignored, and found favorable com- 
parison with experimental results, especially 
when the influence of buoyancy on the steady 
motion generated by the oscillations was small 
(Gr/Re2 + 0). 

It is the purpose of this paper to present an 
analysis in which the influence of buoyancy is 
restored, and to give some illustrative solutions. 
These solutions are obtained from the coupled 
momentum and energy equations, and are valid 
in a region near the lower stagnation point of the 
cylinder. Before giving details of the analysis, 
it is important to discuss the physical background 
for it. 

Attention is restricted here to sound fields 
and vibrations for which the corresponding 
acoustic wavelength is large compared with the 
cylinder diameter. It is then possible to consider 
the fluid in the neighborhood of the cylinder as 
incompressible; for this case it is immaterial 
whether the fluid is stationary and cylinder 
oscillating or vice versa. This remains true if a 
density variation occurs only in buoyancy terms 
of the equations, i.e. if the Boussinesq approxi- 
mation is made. 

1245 
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FIG. 1. Isothermal acoustic streaming around a circular cylinder at small streaming 
Reynolds numbers. 

Isothermal, harmonic free-stream oscillations 
in a fluid surrounding a stationary cylinder give 
rise to a steady motion near the cylinder, known 
as acoustic streaming [3]. This motion is 
illustrated in Fig 1 and consists of two parts. In 
each quadrant a circulatory motion is estab- 
lished. For horizontal oscillations (as shown) the 
motion near the surface is from the equator to 
the poles. Radially beyond this region the motion 
is in the opposite direction. The outer flow 
depends upon the streaming Reynolds number, 
a*o/v; for small values of this parameter, the 
outermost motion is as illustrated with flows 
towards and away from the cylinder along 
vertical and horizontal planes, while for large 
values of the parameter the velocities in the 
outer flow are reduced and the approaching 

flow is more evenly distributed over the cir- 
cumference of the cylinder, although the plane 
jets of outflow remain [4]. 

When the flow around the cylinder is not 
isothermal, the streaming motion is affected. 
A variation in the local acoustic impedance 
@ times the speed of sound) occurs through the 
thermal boundary layer, and this alters the 
Reynolds stresses-which drive the streaming 
motion-in a way that is complicated to analyse. 
Clearly, the general case involves a complicated 
coupling between the momentum and energy 
equations. The temperature distribution is deter- 
mined from the energy equation in which the 
coefficients include the streaming velocity com- 
ponents. These velocity components, in turn, 
are determined from the momentum equation 
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for the time-averaged flow for which the driving 
stresses are derived from the temperature field 
(through the buoyancy term) and from the 
primary oscillating flow. The local velocity 
components for the latter flow are affected by 
the complete impedance field. The same coupling 
is found in ordinary convection problems, and 
it is usually necessary to introduce simplifying 
assumptions to make the equations tractable. 
In incompressible flow the fluid properties are 
often assumed constant. Comparison with ex- 
periment is good unless very large property 
variations are involved. It is encouraging that 
Richardson [2] found good comparison on this 
basis. 

The convective motion near a horizontal 
heated cylinder in a gravitational field has been 
studied by Hermann [S], by Chiang and Kaye 
[6], and by Saville and Churchill [7]. The method 
of solution to be described here is an extension 
of that of Chiang and Kaye, the final equations 
being rather similar although their genesis is 
somewhat different. As pointed out by Churchill 
[8], a complete description of natural convec- 
tion from a heated body immersed in an infinite 
fluid is difficult to achieve because of the prob- 
lem of representing adequately the motion far 
from the body, where the fluid carried up by 
buoyancy must descend. A boundary layer 
approach is adopted here, and use of this method 
cannot be expected to yield useful information 
near to or downstream of the point of separation 
of flow from the surface. The method is therefore 
limited in its application to regions not too 
remote from the forward stagnation point of the 
flow (i.e. the lowest point on the circumference 
of the cylinder), and also to large streaming 
Reynolds numbers. 

The diffusion of vorticity (periodically varying 
in sign) into the fluid occurs through a character- 
istic length scale, (v/o)*, known as the a.c. 
boundary layer thickness. For boundary layer 
analysis to be applied, this thickness must be 
small compared with the cylinder radius. For 
example, in fluids such as water or air, with 
frequencies of 100 cps or more, the a.c. boundary 

layer is of the order of 10m3 ft or less. For all 
but the smallest cylinders, therefore, the bound- 
ary layer approach is easily justified as far as the 
oscillations are concerned. We wish to be able 
to use, as one boundary condition in the equa- 
tions derived, that the steady (streaming) motion 
is vanishingly small at the edge of the thermal 
boundary layer. This requires that a2c.+ is 
large, or that R/Gr* is large; but the latter condi- 
tion implies that Gr* is small, which falls 
outside the scope of boundary layer analysis. 
The basic question is how to choose conditions 
such that results of analysis can be compared 
with existing experimental data or, if there are 
inadequate local transport data available, how 
to choose conditions such that suitable data 
might be forthcoming Since the analysis starts 
from pure natural convection, for boundary 
layer analysis to be employed the thermal 
boundary layer must be fairly thin compared 
with the cylinder radius. The laminar thermal 
boundary layer thickness is of the order of 
R/Gr*; for this to be smaller than, say, R/10 
requires that Gr be greater than 104. The effects 
of oscillations appear to be stronger when the 
a.c. boundary layer thickness is small compared 
with the natural convection boundary layer 
thickness. And for R/10 to be large in comparison 
with an a.c. boundary layer thickness of 10e3 ft 
places a minimum of R of a few hundredths of 
a foot. 

When the direction of oscillation of the 
cylinder, or of propagation of a sound field 
around the cylinder, is either vertical or hori- 
zontal, it is possible to obtain a similarity solution 
for the region of the flow in the neighborhood 
of the stagnation point on the bottom of the 
cylinder. 

2. DERIVATION OF EQUATIONS 

The equations of motion are most conveniently 
written in curvilinear coordinates, shown in 
Fig 1, in which the origin is at the lower stagna- 
tion point, the x-axis lies along the surface and 
the y-axis is normal to it. This notation is 
standard for natural convection, but differs 
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from the usage of Richardson in analyzing heat 
transfer by acoustic streaming, where the z-axis 
was normal to the cylinder. 

At large distances from the cylinder, the fluid 
possesses an oscillatory motion described by 

u = ua, cos ot. (1) 

Nearer the cylinder, but outside the oscillation 
boundary layer, the velocity component parallel 
to the surface is 

U(x, t) = U,(x) cos cot, given by either 

U(x, t) = 2Um sin (x/R) cos cot (24 

or 

U(x, t) = 2U, cos (x/R) cos ot (W 

depending upon whether the externally imposed 
oscillations are in a vertical or horizontal 
direction respectively. 

In the curvilinear system, the boundary-layer 
equations retain their usual form provided the 
boundary-layer thickness is small in comparison 
with the radius of curvature of the surface, and 
the radius of curvature itself does not vary 
rapidly along the surface. In the present case, the 
latter condition is satisfied exactly (dR/dx = 0), 
while the former is acceptable in the vicinity of 
the origin. 

Conservation of momentum in the x-direction 
is expressed by 

au 
at 

+u~+,~~-Lap a2u 
ay pax +yp 

+ gfi(T - T,) sin (x/R) 

or, since 

lap au ---_= 
P ax 

z+uE 

by 

au a% au au au au ~_~~~~~~~~~~_~+_ 
at ay at ax ay ax 

+ gB(T - TJ sin (x/R). (3) 

The equation has been written in this way 

because the terms on the left hand side are, for 
thin layers and high frequencies, of a larger 
order of magnitude than those on the right. The 
associated energy equation is, as usual, 

aT dT a2T 
Ux+v~=M-@ 

A first approximation to the solution of (3) is 
found by setting the right hand terms to zero. 
Introducing a dimensionless wall distance 
rl = y(o/2v)+, the first approximation to the 
stream function is found to be 

x [ 1 - exp (- (1 + i) q)] - 2q} exp (iot). 

The resulting velocity components are then 

(54 

a* 2v + 

V=-ax=- 0 1 ; u; rfcosot 

+ Lcos(wt + 3x/4) + Lexp(-v) 
42 J2 

x cos(ot-q-n/4). 
I 

P-9 

These expressions may be inserted into 
equation (3) to yield a second approximation 
to the solution. Before doing so, however, we 
anticipate that the final velocities may contain 
both steady and fluctuating parts, and write, 

in (3), 

u = ii + u’, v = fi + u’. 

When the time average of each term in (3) is 
then calculated, the equation for the mean 
motion is obtained: 

_ aii _aii v% a% a r2 
u~+"ay=~dx+vay2-axU 

- az + g/M sin x/R. 
ay 

(6) 
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The terms containing u’ and o’ involve the 
Reynolds stresses, analogous to those which 
arise in turbulent flow. Here, however, the 
fluctuations are the result of the imposed 
oscillatory motion. We now assume that a 
solution of the complete equation (6)-the time- 
averaged version of (3)-tan be obtained by using 
the approximate expressions (5a + b) for u’ 
and v’. 

This leads to 

,2 = Ui{f - exp(-fj)cos q+ iexp(-2q)) U 

u’u)= _(~~uuu~~~_f+“P(-:)c~s~ 

- iexp(-q)cos 9 - iexp(-2q) 
1 

and hence 

a-z 
z” = U,Ub{l - 2exp(-@cosq 

+ exp(-W) 

87-T -uv =--UoQ 
i 

1 
- 

ay 
2 - iexp(-q)cosfj 

+ +(q- l)exp(-q)cos 1 -i 
( ) 

+ fexp(-2q) . 

We next introduce the following set of 
dimensionless variables* : 

5 = xJR; 

E = Gr’y/R = Grf(2v/o)*q/R = qfA say; 

JI = Gr*v<F(E); 

G = e/e, = (T - TJ/(~, - T,). 

Furthermore, since we are limiting our attention 
to small values of x, we may set sin (x/R) = x/R. 
Equations (6) and (4) then become 

* These variables are not unique; for very small Prandtl 
numbers, or to compute directly the case Gr = 0, Re, + 00, 
other sets of variables arise. 

F”’ + F”*F - F” + G + K-(IZE) = 0 (7) 

G” + Pr.G’.F = 0 (8) 

where primes denote differentiation with respect 
to E, K denotes 

4Uz R2 a, 
Grv2 ’ 

the negative (positive) sign in (7) is taken for 
horizontal (vertical) oscillations in the far field, 
and f(&‘) stands for 

3 
2exp(-LE)cos1E - kexp(-21E) 

+ L exp (-LE) (LE - 1) cos (IE - n/4). 
J2 

A typical variation of f(lE) with E is shown in 
Fig. 2. The approach of f(JE) to its limiting 
value of zero is an indication of the diminishing 
effect on the motion of the oscillations which 
generate the Reynolds stresses. 

The solution is seen to be dependent upon 
three parameters: K, 3, and Pr. In the nomen- 
clature used previously by Richardson [9], 

K = s ReiJGr, 

where Reosc = 2*U,RIv, and is known as the 
oscillation Reynolds number. Thus K expresses 
the intensity of the effects of oscillation in terms 
of the intensity of the buoyancy effects. The 
parameter A can be written 

RIGr+ 

1 = 2f(v/C# 

and is a direct measure of the ratio of the thermal 
and a.c. boundary-layer thicknesses. When I is 
large the a.c. boundary layer is very thin com- 
pared with the natural convection boundary 
layer. 

The solution of (7) and (8) is not immediately 
dependent upon the Grashof number. However, 
the parameter of practical interest, the Nusselt 
number, is given by 

Nu = F = -Gr*G'(O). 



1250 

f(X 

G. DE VAHL DAVIS and P. D. RICHARDSON 

03. 

.E) 

02.- 
1 

Olh 

FIG. 2. The variable j’(Z) as a function of E. It should be noted that the E scale is 
logarithmic. 

Another parameter used by Richardson is a 
streaming strength parameter 

E = 4Re/Gr*, 

where Re, = Uf&ov, the streaming Reynolds 
number; Res is also given by a20/v, where a is 
the amplitude of oscillation; thus Res is the 
square of the ratio of this amplitude to the a.c. 
boundary-layer thickness. In terms of the present 
parameters, 

E = Re~JGr12 = Kf212. 

The boundary conditions to which (7) and (8) 
are subject are that the velocity shall vanish at 
the surface of the cylinder, the azimuthal velocity 
component shall vanish at large wall distances* 
and the temperature shall have.specified values 
at the surface and far from it. In terms of the new 
variables, these boundary conditions are 

F=F’=O, G=l at E=O, 

F’ + 0, G+O at E-+co. 
(9) 

* It will be noticed that F’ represents the azimuthal 
component of the mean velocity, and that (by application of 
the continuity equation) F is proportional to the normal 
component. As a result of the averaging process, the Iluctua- 
tions do not appear in the boundary conditions. 

The results of computations for the solutions 
of equations (7)-(9) display so many of the charac- 
teristics which have been observed qualitatively 
in experiment that it was decided to extend the 
solutions by using series expansions of sin(x/R) 
and cos (x/R) instead of the one-term approxi- 
mations, valid as x/R + 0, used in equations (7) 
and (8). These added terms give rise to modifi- 
cations of the solutions of (7)-(9) in the azimuthal 
direction. However, these modifications are of 
magnitudes rather than of basic flow patterns 
and discussion of the extended solutions is 
deferred so that only the basic solutions are 
presented here. 

3. COMPUTATIONAL PROCEDURE 

Equations (7)-49) represent a two-point 
boundary-value problem. Solution is rendered 
difficult because two boundary values are not 
known a priori--the values of F” and G’ at the 
wall. The usual procedure for the solution of such 
problems is to guess values for the two unknowns 
at the wall, to make a step-by-step integration 
of the equations and to correct the guessed values 
iteratively until the specified conditions are 
satisfied at “infinity”. For boundary layers, an 
acceptable “infinity” is mercifully close to the 
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wall. Here, an adaptive approach for specifying 
infinity was used. Initially a value of Em = 16.0 
was specified, and values of F”(0) and G’(0) found 
such that 

IWo)\ < +lG(4( < ci (10) 

were satisfied. The values of F”(co) and G’(co) 
were then examined, and if they were not smaller 
than a second bound Ed, the value of Em was 
increased (by 1.0) and the integration repeated. 

If the values of F”(0) and G’(0) were not close 
to their correct values, intermediate results 
became obviously incorrect. Gross corrections 
to the starting values were made until an integra- 
tion to Eoo could be obtained without catastrophe. 
Small changes were then made to the starting 
values, a second complete integration obtained, 
and iterpolation used to force equation (10) to 
be satisfied. 

Probably as a result of the coupling of equa- 
equations (7) and (8), the response of F’(cc) 
and G(co) to changes in F”(0) and G’(0) is some- 
what unexpected. A typical situation is shown in 
Fig. 3, where, for a particular set of values of the 
parameters, the values at “infinity” of F’, F”, G 
and G’ are plotted against F”(0) and G’(0). It 
can be seen that F’(m) is almost independent of 
F”(O), but very sensitive to G’(0). (This situation 
does not exist unless F”(0) and G’(0) are close 
to their correct values.) Thus, interpolation from 
two successive values of F’(a) to improve the 
estimate of F”(0) is not successful. However, it 
was found entirely satisfactory to adjust G’(0) 
until F’(co) satisfied equation (lo), adjust F”(0) 
until G’(cc) satisfied equation (lo), and repeat 
both processes until the two conditions in 
equation (10) were satisfied simultaneously. At a 
later stage in the computations a different itera- 
tion scheme for controlling convergence was 
tried using a technique somewhat similar to that 
described by Nachtsheim and Swigert [lo]. 
The same convergence criteria were used with 
both iteration schemes. The results were virtually 
identical, of course, the latter iteration scheme 
giving a larger range of convergence. 

The integration of equations (7) and (8) was 

F”(0) = -0.85903 

Re OSC - q 0.02 
Gf”? 

E = 1~000 

0.000 I 

0.000 I 

G’(O) = -0 37005 

*e osc 
- = 0.02 
Gt- ‘j2 

E = I.000 

0 00050 - 

0.00025 - 

O- 

a F’ 
x F” 

+G 
0 G’ 

A F’ 
X F” 

+G 
o G’ 

-0-00025 

i 

/+- + 
F”(o)+ 

FIG. 3. Effect of initial values of F”(0) and G’(0) on values at 
“infinity” (a) and (b). 
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achieved by replacing them by a set of five first- 
order equations, and usinga fourth-order Runge- 
Kutta computer-library subroutine. A step size 
in E of 0.001 up to E = 0.5, and of 0.05 thereafter, 
was found sufficient in order to ensure conver- 
gence (in the sense that the solution becomes in- 
dependent of further reductions in step size). 
This was particularly true with large values of A, 
for which rapid fluctuations occur in f(,lE) at 
small values of E. The convergence criteria 
adopted were &I = 04001 and Ed = 04005. 

4. RESULTS FOR THE FIRST-ORDER EQUATIONS 

Solutions of equations (7x9) have been com- 
puted within the following ranges of variables, 
all for Pr = 0.7 and for vertically and horizontally 
propagated sound fields: 

5<L<50 

OdK<2000, 

the maximum range examined of the streaming 
strength parameter K being so that the corres- 
ponding range of the streaming strength para- 
meter E is 0 < E < 2.5. This range of variables 
was chosen primarily to correspond with some 

experimental data, but also to explore somewhat 
the effects of E.. In addition, some solutions were 
obtained for Pr = 2.85,1 = 6,O 9 E < 5.0 which 
are of interest for a possible mass-transfer experi- 
ment. 

There is a great effect of the Reynolds stresses 
on the flow pattern. These effects are illustrated 
in graphs of the velocity and temperature distri- 
butions, Figs. 4-9, for 2s in the vicinity of 20, 
together with corresponding graphs for undis- 
turbed natural convection. The boundary layer 
really involves two characteristic thicknesses, one 
being characteristic of the Reynolds stress distri- 
bution (see Fig. 2) and the other of the natural 
convection. To display the effects in both layers 
in similar detail it has been convenient to use 
semi-logarithmic coordinates for the graphs. 
Regions of flow reversal can be identified easily 
(F’ < 0). The temperature gradients, G’, through 
the regions of greatly changed flow (E < 0.3, say) 
are very nearly constant, showing that in this 
region conduction is far more significant than 
convection. Figures 10 and 11 also help to 
give some perspective on the results: both are 
for vertical oscillations. Figure 10 illustrates 
that changes in the temperature gradient at the 

I,O- 

FIG. 4. Variables obtained in solution of the momentum and energy equations 
for steady natural convection in the absence of oscillations. The space variable 
has been plotted on a logarithmic scale to facilitate comparison with the corre- 

sponding solutions in the presence of oscillations. 
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min Ft CC)=-9.450 
at E=0,073 

FIG. 9. As Fig. 8, but with E increased to 1.0. 
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FIG. 10. Computed temperature gradient at the wall, G’(O), 
and skin friction, F”(0). 

FIG. 11. Temperature profiles for various E with vertical 
oscillations. 



NATURAL CONVECTION IN A SOUND FIELD 1255 

0, 

0.01’ 
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0.03 

0.04 
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0.03 - fl 
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0.04 -) 
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FIG. 12. (a) Natural convection, no sound. (b) Vertical sound field, I, = 23.8, E = 4 Re,/Gr* = 0.14. 
(c) Horizontal sound field, ,I = 30, E = 010. The values of E in the range of these graphs is small 
and shows mainly what happens in the oscillating boundary-layer region. The numbers on the 

stream-lines are values of the stream function. 

wall, G’(O), and in the skin friction, F”(O), are creased, but the relative shift of the profiles 
almost linear with E when E is small; however, seems to remain almost constant for E > 1. 
over the range of E shown, the heat-transfer rate The motion is most vividly displayed by 
decreases by about one-half while the friction charts of the streamline distribution. A chart of 
increases by about 13 times. Figure 11 shows the streamlines which result from the imposed 
how the temperature profile changes; the profiles oscillations, in the absence of buoyancy, has 
have smaller slopes near the origin as E is in- been shown in Fig 1. The streamline patterns 

E=O E=0.3 E= 0.7 E=I.O 

FIG 13. Vertical sound tield, I = 23.8. The streamline patterns illustrate the growth of a reversed flow bubble at the 
bottom of a heated cylinder as E is increased from 0 to 1.0. 
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for the combined effects of buoyancy and 
Reynolds stresses can be computed from the 
solutions of equations (7H9), since 

& = 5W). 

Streamlines computed in this way for F,(E) 
are shown in Figs. 12 and 13. The solution F(E) 
is asymptotically valid as t + 0, and to empha- 
size this the streamlines have been shown only 
within 30” from the origin. The charts have been 
plotted in polar coordinates which give the 
boundary layer the appearance of extending 
over a large radius-ratio. This is convenient 
for examining streamline behaviour, but should 
not be used for literal interpretation as the 
physical plane : the boundary layer assumptions 
used require that the boundary layer be thin 
compared with the cylinder radius. 

The principal features of the streamline pat- 
terns should be noted. For very weak sound fields 
the flow pattern is hardly changed at all. 
Once E becomes sufficiently large, however, at 
least one region of reversed flow -develops. (A 
region of reversed flow is one having closed 
streamlines, or which contains regions where the 
azimuthal component of velocity is negative.) 
For horizontal oscillations, this region ofreversed 
flow is confined to a small range of E and corre- 
sponds to the inner streaming motion of the 
isothermal case. For vertical oscillations two 
regions of reversed flow are found. There is one 
small region close to the wall, similar to that 
found with horizontal oscillations but opposite 
in direction. The other region of reversed 
flow is more extensive, and grows rapidly with 
increase in E. The outer acoustic streaming pattern 
associated with isothermal vertical oscillations 
involves a radial outflow at 5 = 0; if this outflow 
were hot, so that it had buoyancy which opposed 
its motion, it might be expected to stop its 
descent at some point and turn to move azi- 
muthally round the cylinder. Thus the flow 
pattern found in the computer solution at larger 
E corresponds qualitatively to what could be 
expected by superposition of buoyancy effects 

on the isothermal acoustic streaming pattern. 
The same comment can be applied to the results 
for horizontal oscillations. The presence of 
regions of reversed flow is found in the first- 
order solutions only when a sufficient value of E 
is reached, this value depending upon 1 and the 
direction of the applied oscillations. This suggests 
by itself that there may be critical conditions 
involved, i.e. that there is a critical E for the onset 
of reversed flow. An examination of the flow field 
with higher-order equations taken into account 
indicates that the reversed flow develops first 
near the stagnation point and grows into the 
region c > 0 as E increases. 

The most dramatic changes in the flow pattern 
occur at values of E where the flow velocities are 
small, and pure conduction largely smothers 
changes in the convective pattern, so that the 
isotherms appear to be relatively insensitive 
to the flow changes. For the solutions of the 
first-order equations the isotherms are simply 
circular, and do not reveal interesting features 
when seen in a polar graph. 

One is tempted to suggest that the flow patterns 
must tend to those of simple acoustic streaming 
as E + cc, because this presents the situation 
where buoyancy effects become negligible. How- 
ever, the ratio of the orders of magnitude of the 
inertia terms to the Reynolds stress terms is 
s/I’, and it is only when this ratio is very small 
that the streaming motion can be expected to 
follow the pattern described by Stuart [4]. The 
requirement that s/L2 $ 1 corresponds in physi- 
cal terms to the requirement that a/d 6 1. If the 
computer solutions are examined as E + CD with 
1 held constant, the flow patterns cannot be 
expected to tend to those of Stuart. Some com- 
putations were made to assess quantitatively 
the effects of finite &/A2 in the solution of the 
momentum equation with the buoyancy term 
(G) omitted. These showed that the magnitude 
of the wall shear stress increases beyond that 
associated with Stuart’s asymptotic analysis, 
and that the flow at large E corresponds closely 
to the exponential decay in Stuart’s solution 
when the origin of his [ variable coincides with 
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that of E as used here. The maximum velocity, 
(F/E), in the outer streaming is slightly dimin- 
ished; for E/I’ = 0401596 the maximum velocity 
was about 0.696, and for s/1’ twice as large 
(E = 1, I = 17.7) it fell to about 0.664. A conse- 
quence of these changes in the velocity is that 
the separating streamline between the inner 
and outer streaming motions moves away 

Table la. h = 50, Pr = 0.1; Horizontal soundfield boundary 
values 

E G’(O) F”(0) F(m) 

0.0 - 0.37023 0.85935 1.3484 
0.05 -031101 - 042433 1.3531 
0.10 - 0.38382 - 1~10910 1.3603 
0.20 -0.39709 -428201 1.3144 
0.30 -@41006 - 6.85926 1.3856 
0.40 - 0.42215 - 944058 I ,3961 
0.50 -043511 - 12.02581 14078 
0.60 -044135 - 14.61411 1.4213 
0.70 - @45929 - 11.20734 1.4333 
0.80 -0~41100 - 19.80339 14453 
090 - 0.48250 - 22.40288 1.4540 
1.00 - 049319 - 25.00552 1.4671 
1.20 -051580 - 30.22008 1.4940 
140 -0.53709 - 3544650 1.5194 
1.60 -055712 -40.68411 1.5473 
1.80 -0.57775 - 4593234 1.5130 
2.00 -0.59119 - 51.19048 1.6024 
2.20 -0.61609 - 56.45839 1.6291 
2.40 - 0.63449 - 61.13547 1.6591 

Table lb. 1 = 50; Pr = 0.7; E = 1.0; Horizontal sound field 

E F F G G 

0.0 0.0 0.0 1GOOOO - 0.49380 
@Ol - OGOO84 -012954 0.99506 -049380 
0.02 -000192 -005826 0.99012 - 049380 
0.03 -000163 0.12854 0.98519 -049381 
0.04 OWO76 0.34675 0.98025 -0.49381 
0.05 0+)0522 0.53749 097531 - 0.49380 
0.01 0.01848 0.75107 0.96543 -049312 
@lo 004189 0.77157 0.95063 - 0.49341 
0.15 0.07947 073794 0.92598 - 0.49236 
0.20 0.11630 0.73502 0.90140 - 049068 
0.25 0.15290 0.12890 0.87692 -0.48837 
0.35 022508 0.71419 082839 -048195 
050 033024 068700 0.75707 - 0.46808 
1.00 064527 0.56781 0.54011 -0.39393 
200 1.08261 0.31499 0.23890 -0.21199 
4.00 140323 0.06119 0.03495 -0.03510 
6.00 1.45860 @00912 OQO457 -000468 
80l 1.46649 om122 O%IO58 - 000060 

1OGCl 1.46749 OmO14 omoO7 - OGOOO8 
12.00 1.46758 OmOO1 OQOoOO -OmOO1 

Table lc. h = 50; Pr = 07; E = 2.4; Horizontal sound j?eld 

E F F G G 

0.0 0.0 0.0 1GOOW - 063449 
0.01 -0GO211 - 0.32805 0.99366 - 0.63450 
002 - @00495 -0.17397 098731 -@63451 
0.03 - OGO467 0.25748 098096 - 0.63454 
0.04 OmO45 0.16449 091462 - 0.63455 
0.05 0~01040 1.20574 0.96827 - 0.63452 
0.07 OGIO23 1.68581 0.95559 -063431 
010 0.09220 1.70283 0.93657 - 0.63343 
0.15 017240 1.53592 090496 - 0.63048 
0.20 024737 1.46383 0.87355 - 0.62586 
025 0.31812 1.39019 0.84240 -@61969 
0.35 0.4508 1 1.25416 0.78122 -0.60317 
0.50 0.62518 1.07541 069312 -056991 
100 1.04639 0.64588 044376 - 0.42272 
2.00 144984 022939 0.15818 -0.17228 
400 1.63807 0.02559 001632 -001897 
6.00 1.65788 0.00232 oGO15o -@00188 
8.00 1.65934 oOoOO3 OmoO4 -0.00018 

1000 1.65919 - owOO7 -OmO10 - omOO2 
12.00 1.65914 omOO5 - oGcO12 -0QOOOO 

Table 2a. h = 25.0; Pr = 0.70; Horizontal sound field 
boundary values 

E G’(O) F”(O) F(a) 

0.0 -0.37023 085935 1.3484 
005 -037648 0.20070 1.3532 
0.10 -0.38266 -0.45891 1.3595 
0.20 - 0.39476 - 1.78099 1.3718 
0.30 - 040651 - 3.10612 1.3834 
040 -0.41809 - 4.43592 1.3942 
0.50 - 0.42934 - 5.16847 14016 
060 - 044034 -7.10401 1.4181 
0.70 -0.45111 - 844265 1.4291 
0.80 -@46165 - 9.78421 14416 
0.90 -0.47198 - 11.12856 1.4531 
1.00 - 048209 - 12.47558 1.4654 
1.10 - 0.49201 - 13.82524 1.4743 
1.20 -@50175 - 15.17730 1.4897 
1.40 -0.52011 - 1788882 1.5106 
160 -0.53898 - 2060936 1.5351 
1.80 -055668 - 2333855 1.5597 
2.00 -057380 - 26.01590 1.5834 
2.50 -0.61433 -32.95189 1.6586 

somewhat from the cylinder surface compared 
with E/I’ -+ 0. However, at the appropriate 
limits the computed results are in accord with 
previous results. 

All computed results are represented in the 
set of tables, Tables 1-13. These list all boundary 
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Table2b. h = 25.0; Pr = 0.70; E = 1.0; Horizontal soundfield Table 3b. h = 25.0; Pr = @70; E = @S; Vertical sound field 
- 

E F F G G’ 

0.0 0.0 0.0 1mooo - 0.48209 
0.01 -@00052 - 009386 0.99518 - 0.48209 
0.02 -00X68 -0.12903 0.99036 - 0.48209 
o-04 -0.00382 - 0.05756 0.98072 -0.48211 
007 -O+lO138 0.23854 0.96625 -0.48215 
0.10 0.01047 053698 095179 -048211 
0.15 om454 0.76890 0.92769 - 0.48166 
025 0.12116 0.73777 0.87964 - 0.47886 
0.50 0.29950 @69233 0.76181 -0.46149 
1.0 a61786 0.57554 0.54682 -0.39237 
2.0 1.06346 0.32292 0.24444 -0.21462 
5.0 1.43723 0.02584 0.01337 -001340 
8.0 1.46343 003172 omO79 - 0.00063 

12.0 1.46539 - omOO3 O~ooO18 -0mOO1 

Table 2c. h = 25.0; Pr = @70; E = 2.5; Horizontal soundfield 

E F F G G 

0.0 0.0 o-0 1QOOOO -@61433 
001 -0.00139 -025219 @99386 -0.61433 
0.02 - ow455 -0.35753 0.98771 -0.61434 
004 -0.01093 -021319 0.97543 -0.61441 
0.07 - 0.00768 047679 0.95699 -@61456 
0.10 0.01762 1.17416 093855 -0.61451 
015 009244 1.67691 0.90785 -@61338 
0.25 0.25254 1.46540 0.84683 - 060592 
0.5 0.57220 1.12217 070009 - 0.56307 
1.0 1.01142 067326 0.45181 - 0.42401 
2.0 1.43242 0.24007 0.16294 -0.17584 
5.0 1.64843 ox)0955 O-00555 -003623 
8.0 1.65755 OmO68 owO33 -0mO19 

12.0 1.65856 oQoOO1 O+IOO16 -OMlOOO 

Table 3a. h = 25.00; Pr = 0.70; Vertical sourdfield boundary 
values 

E G’(O) F’(O) F(m) 

- 0.37023 0.85935 1.3484 
-036389 1.51699 1.3435 
-0.35746 2.11356 1.3376 
-034433 3.48350 1.3290 
- 0.33079 4.78881 1.3178 
-0.31681 6.08921 1.3081 
-030237 7.38431 I.3010 
- 0.28741 8.67359 1.2893 

E F 

00 0.0 0.0 1OOOOO 
0.02 0~00107 0.08715 0.99395 
0.04 0.00281 0.07345 0.98791 
0.06 0.00362 0.00158 0.98186 
0.08 0.00277 - 0.08643 097581 
@lo OWO25 -0.16113 0.96976 
0.15 -0.01019 - 0.22847 0.95465 
0.20 -0.02071 -0.18376 0.93952 
0.25 -0.02836 -0.12377 0.92439 
0.30 - 0.03330 -007585 0.90924 
0.35 - 0.03605 - 0.03462 089408 
0.40 - 0.03680 000453 0.87889 
0.50 - 0.03263 007757 0.84847 
0.70 - om440 0.19946 0.78743 
1.00 0.07618 0.32751 @69596 
2.00 0.48424 0.42317 0.41297 
500 1.20123 0.08176 0.04024 
800 1.29412 000673 0.00272 

12.00 1.30096 OWXXI 0.00008 

F G G’ 
-___ 

-0.30237 
- 0.30237 
- 0.30236 
- 0.30235 
- 0.30233 
- 0.30233 
-030237 
- 0.30254 
- 0.30280 
-0.30313 
- 0.30350 
-0.30389 
- 0.30464 
- 0.30552 
- 0.30343 
- 0.25068 
-0.03521 
- 0.00247 
- OQOOO6 

Table 4a. /I = 23.8; Pr = 0.7: Vertical sound ,field boundary 
values 

E G’(O) F”(0) F(a) 

0.0 -0.37021 0.85932 1.3415 
014 - 0.35246 2.61417 1.3517 
0.18 - 034723 3.11399 1.3447 
0.20 - 0.34455 3.36352 1.3250 
0.225 -@34124 3.67535 1.3256 
0.250 -@33788 3.98681 1.3163 
0.275 -0.33451 4.29800 1.3127 
0.300 -0.33117 4.609 11 1.3339 
0400 -0.31725 5.84956 I.2980 
0.500 - 0.30296 7.08499 1.3057 
0600 - 0.28809 8.31466 1.2899 
0.700 - 0.27264 9.53804 1.2696 
0800 -0.25658 10.75460 1.2663 
0900 - 0.23980 11.96348 1.2800 
1.0 -0.22213 13.16345 1.2656 

values determined, together with a very small 
sampling of velocity and temperature profiles. 

5. COMPARISON WlTH EXPERIMENTS 

The most important characteristic of these 
computations is that they are closely similar to 
the results found in related experiments [ 1 l-131. 
Thus, in both theory and experiment, horizontal 
oscillations increase heat transfer at the bottom 
of the cylinder and vertical oscillations decrease 
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Table 4b. ), = 23.8; Pr = 0.7; E = @5; Vertical sound jeld Table 5a. h = 20; Pr = 0.7; Horizontal soundfield boundary 
values 

E F F G G 
E G’(O) F”(0) F(m) 

DO 0.0 
0.02 0GO105 
0.04 OX)0284 
0.06 0.00387 
0.08 000339 
0.10 oGO13o 
0.15 - OGO840 
0.20 -0.01886 
025 - 002666 
0.30 -0.03166 
0.35 - 0.03440 
040 -0.03513 
0.50 - 003095 
0.70 -0GO271 
1.00 0.07786 
200 0.48568 
5.00 1.20191 
8.00 1.29558 

12m 1.30424 
16.00 1.30599 

@O 1MIOOO 
0.08664 099394 
008014 0.98788 
0.01694 098182 

- 006577 0.97576 
-0.14035 0.96971 
-0.22126 0.95456 
-0.18634 @93941 
-012678 0.92425 
- 0.07606 090907 
- 0.03421 0.89388 

0.00476 0.87867 
007764 0.84820 
0.19950 @78708 
0.32744 0.6955 1 
0.42278 0.41244 
0.08180 004011 
000712 000279 

- 0.30296 
- 0.30296 
-0.30295 
- 030294 
- 0.30292 
-030291 
- 0.30294 
- 030309 
-0.30333 
-030364 
- 0.30400 
- 0.30437 
- 0.30509 
-0.30589 
- 0.30369 
- 0.25062 
-003513 
- 0.00246 

0.0 - 0.37023 
0.05 -0.37619 
0.10 -0.38209 
020 - 0.39363 
0.30 -040487 
0.40 -0.41583 
0.50 - 0.42653 
060 - 0.43697 
0.70 -044718 
0.80 -0.45716 
0.90 - 0.46693 
1.00 - 0.47650 

0.85925 1.3421 
032583 1.3497 

- 0.20853 1.3568 
- 1.27992 1.3683 
- 2.35471 1.3771 
- 3.43256 1.3919 
-4.51357 14003 
- 5.59742 1.4113 
- 6.68394 1.4274 
- 7.77321 1.4379 
- 8.86510 14455 
-995925 1.4628 

Table 5b. 1 = 20; Pr = 0.7; E = 1.0; Horizontal sound field 

F F 
000050 OGOOO6 -0QOOO6 - a 

F G G 

000034 -000001 -0GlXXKJ 0.0 0.0 0.0 
-0m147 -0.12122 
- OGO392 -010453 
-@00500 000902 
- OW323 0.17311 

ofIO199 Q34733 
0.02837 0.67111 
0.06535 0.77789 
0.10422 0.76737 
0.14181 0.73730 
0.17817 071946 
0.21390 0.71064 
0.28423 0.69505 
0.41917 065303 
060426 0.57936 
1.05389 032675 
1.43362 0.02647 
1.46059 000181 
1.46274 omOO1 

1WOOO - 0.47650 
0.99047 - 0.47650 
098094 -047652 
0.97141 -0.47655 
0.96188 - 0.47658 
0.95235 - 0.47659 
0.92852 - 047636 
090472 -0.47558 
0.88097 -0.47417 
0.85731 -047213 
083377 - 0.46950 
0.8 1037 - 0.46628 
0.76413 - 0.45822 
067457 -0.43616 
0.55012 -0.39157 
0.24719 -021593 
0.01364 -0.01364 
000081 - 000065 
oQOO19 -003001 

Table 4c. h = 23.8; Pr = 0.7; E = 1.0; Vertical sound field 

E F F G 

0.0 0.0 0.0 1OOOOO 
0.02 OQO189 0.15335 0.99556 
0.04 0.00489 0.12082 0.99111 
0.06 0.00597 - 002472 098667 
0.08 0.00365 - 0.20887 098223 
@lo - 003227 -0.37636 0.97779 
0.15 - a02757 -0.58213 0.96668 
0.20 - 0.05650 -0.55337 0.95557 
0.25 -0.08210 -0.47109 0.94443 
0.30 -0.10394 -0.40613 0.93326 
0.35 -012294 -035488 0.92204 
040 -0.13947 -0.30676 091079 
0.50 -0.16542 -0.21307 0.88810 
0.70 -0.19084 - 0.04577 0.84190 
1.00 -017316 015349 0.77028 
2.00 0.16558 0+4013 0.51953 
5.00 1.09248 0.13107 0.0665 1 
8.00 1.29091 001286 om499 

12.00 1.26535 000036 omO13 
16.00 1.26564 OmOOO -0QOOO1 

G 

-022213 
-@22213 
-0.22212 
-0.22210 
- 0.22208 
- @22208 
- 0.22219 
- 0.22252 
- 0.22306 
- 0.22379 
- 0.22468 
- 0.22572 
-0.22815 
- 0.23400 
-024337 
- 0.24805 
- 005476 
-003441 
-0QOO13 
-OOOOOO 

the local heat transfer. Corresponding changesof 
thermal boundary layer thickness are predicted 
and observed. In addition, observations have 
been made for vertical oscillations which sug- 
gested the presence of a “bubble” of reversed 

0.02 
0.04 
0.06 
0.08 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
040 
@50 
0.70 
1.00 
2.00 
5.00 
8.00 

1200 

Table 6a. X = 20; Pr = 0.7; Vertical sound field boundary 
values 

E G’(O) F”(0) F(a) 

0.0 - 0.37023 
0.1 -035803 
0.2 - 0.34546 
03 -033249 
0.4 -0.31908 
@5 -030521 
0.6 -0.29081 
@7 - 027584 
0.8 - 0.26022 
0.9 - 0.24386 
1.0 - 0.22666 

0.85935 1.3484 
1.92345 1.3372 
2.98360 1.3287 
4.03948 1.3183 
5.09085 1.3126 
6.13721 1.3033 
7.17818 1.2915 
8.21333 1.2876 
924187 1.2764 

1026313 1.2687 
11.27608 1.2636 



1260 G. DE VAHL DAVIS and P. D. RICHARDSON 

Table 6b. 1 = 20; Pr = 0.7; E = 1.0; Vertical soundfield 

E F F G G’ 

0.0 PO @O 1GOOOO - 0.22666 
0.02 000173 0.14716 0.99547 - 0.22666 
0.04 000496 0.15563 0.99093 - 0.22665 
0.06 Om73o 0.06646 0.98640 - 0.22663 
0.08 000727 - 0.07399 0.98187 -0.22661 
0.10 000427 - 0.22529 0.97734 - 0.22659 
0.15 -001463 - 0.49472 0.96601 - 0.22662 
0.20 -004151 -055055 0.95467 -022684 
0.25 - 006779 -049156 0.94332 - @22728 
0.30 -0mO42 -0.41512 0.93194 - 022791 
0.35 -010956 -0.35309 @92052 -@22871 
040 -@12592 - 0.30247 090907 -0.22966 
0.50 -015152 - 0.21047 0.88599 -0.23191 
0.70 -017644 -004332 @83908 -0.23739 
1.00 -@15813 0.15519 0.76653 -0.24613 
2.00 018025 0.43771 0.51430 -0.24821 
5.00 lQ9608 012855 006517 -0.05378 
8.00 1.25063 0.01227 0.00485 - OGO432 

12.00 1.26358 omo1o omOo9 -0~Ow13 
13.00 1.26356 -0mOO9 0GOOOO - omOo5 

~_~__ ~.___ 

Table 7.1 = 18.0; Pr = 0.7; Horizontal soundfield 

E G’(O) F’(O) F(a) 

1.0 - 0.47346 - 8.95042 1.4556 

flow underneath the cylinder when the intensity 
was large enough [13], corresponding to the 
reversed flow region computed here. 

However, it should be noted that at the highest 
intensities achieved in the experiments with 
vertical sound fields an oscillatory, unstable 
motion was observed to develop in the bottom 
stagnation region [ 133. The framework used for 
the analysis presented here precludes calculation 
of instability of the secondary motion, and one 
should not expect the close similarity between 
analysis and experiment to persist to indefinitely 
large values of E (supposing that solutions were 
computed that far). The experimental observa- 
tions suggest that the next stage in development 
of analysis should be to examine the stability 
of the flow, as instability apparently can develop 
at values of E below those at which (with vertical 
oscillations) the downflow jet would break out 

Table 8a. h = 17.7; Pr = 0.70; Horizontal sound field 
boundary. values 

E G’(O) F”(0) F(z) 

0.0 

@l 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

-0.37023 0.85925 1.3415 
-037603 0.38347 1.3519 
-0.38172 - 0.09320 1.3577 
-@39291 - 1.04912 1.3691 
- 0.40379 -2.00815 1.3826 
- 0.41440 - 2.97025 1.3932 
- 0.42474 - 3.93520 1.4047 
- 0.43483 - 4.90292 1.4142 
- 044469 - 5.87323 1.4263 
- 0.45432 - 6.84614 1.4327 
- 0.46374 -7.82136 1.4441 
- 0.47296 - 8.79890 1.4563 
-0.48199 - 977865 1.4677 
- 0.49084 - 1076063 1.4769 
-0.49951 - 11.74465 1.4888 
-0.50801 - 12.73065 1.5009 
-0.51634 - 13.71858 1.5149 
- 0.52453 - 14.70840 1.5271 
-0.53256 - 15.70009 1.5393 
- 0.54045 - 1669354 1.5513 
-0.54821 - 17.68874 1.5632 
-0.55583 - 18.68558 1.5757 
-0.56334 - 19.68420 1.5838 
-0.57071 - 2068434 1.5962 
- 0.57796 - 21.68599 1.6096 
- 0.58507 - 22.68907 1.6235 
- 0.59209 - 23.69370 1.6376 

Table 8b.h = 17.7; Pr = 0.70; E = 1.0; Horizontalsoundfield 
zzz 

E F F G G 

0.0 0.0 
DO2 -0.00135 
0.04 - 0.00384 
0.06 -0m551 
0.08 - 000500 
@lo -0m159 
0.15 0.01982 
0.20 0.05394 
0.25 0.09255 
0.30 0.13095 
@35 016798 
@40 0.20397 
0.50 0.27436 
0.70 040967 
1.00 0.59543 
2.00 1.04747 
5.00 1.42943 
8.00 1.45500 

12.00 1.45625 

0.0 103000 
-0.11466 099054 
-0.11820 0.98 108 
- 0.03765 0.97162 

009470 Q96216 
0.24835 0.95270 
058501 @92905 
0.75039 09054 1 
0.77863 0.88182 
0.75442 0.85831 
0.72837 0.83490 
0.71281 0.81163 
0.69584 0.76562 
0.65513 0.67641 
0.58173 0.55225 
@32893 024894 
002618 0.01369 
000136 Omo64 
omoO2 -0Qooo0 

- 0.47296 
- 047297 
- 0.47298 
- 0.47302 
-047305 
- 0.47308 
- 0.47295 
- 0.47235 
-0.47114 
- 0.46930 
- 0.46685 
-0.46382 
-0.45611 
- 0.43475 
-0.39105 
-0.21679 
-0.01383 
- 000066 

of the boundary layer region and vitiate the 
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Table 8c. I = 11.1; Pr = 0.70; E = 2.5; Horizontal soundfield 

E F F G G 

0.0 @O 0.0 1GOOOO - 0.59209 
0.02 -0m371 - 0.32029 0.98816 -0.59210 
004 -0.01095 -0.36213 097632 -0.59216 
0.06 -0.01678 -0.19314 0.96447 - 059228 
0.08 -0.01781 @10600 0.95262 - 0.59243 
0.10 -0.01219 0.45906 0.94077 - 0.59256 
0.15 0.03134 1.22608 0.91115 - 0.59243 
0.20 010306 1.56980 0.88155 -059106 
0.25 0.18266 1.57658 085207 -0.58812 
0.30 0.25870 1.45863 0.82277 -0.58358 
0.35 032860 1.34231 0.79373 -057760 
040 039348 1.25785 0.76503 -057034 
0.50 0.51307 1.13906 0.70885 - 0.55249 
0.70 0.71995 0.93472 060276 - 0.50656 
1.00 0.96229 @69300 0.46295 -0.42401 
200 1.39954 0.25228 0.17027 -0.18087 
500 1.62864 om994 oQO59 1 - 0.00673 
8.00 1.63727 0.00038 oQOO2o - omO22 

12.00 1.63763 OmOO2 OmOO2 -OGOOOO 

Table 9. J. = 17.7; Pr = 0.70; Vertical sound Feld boundary 
values 

E G’(O) F”(0) F(m) 

@O - 0.37023 1.3415 0.85925 
0.05 -036435 1.33429 1.3417 
0.1 -0.35839 1.80834 1.3381 
0.2 -0.34619 2.75360 1.3315 

Table 10. h = 10.0; Pr = 0.7; Horizontal soundfield boundary 
values 

E G’(O) F”(0) 

0.010 -037114 0.80282 
0.015 -0.37160 0.77460 
0.020 -037204 0.7464 1 
0.025 -0.37252 0.71827 
0.030 - 0.37299 069008 
0.035 -0.37345 0.66185 
0040 -0.37391 0.63362 

N.B. Convergence criterion @0005. 

F(a) 

1.3324 
1.3304 
1.3265 
1.3325 
1.3368 
1.3362 
1.3359 

boundary layer assumptions used in the analysis. 
The comparison between this analysis and the 

available experiments cannot be carried further 
to the quantitative level, because there are some 
significant differences in some of the parameters. 
The Grashof numbers in the experiments were 

Table 1 la. I = 5.0; Pr = 0.7; Horizontal soundjeld boundary 
ualues 

E G’(0) F”(0) F(a) 

0.0 -037023 0.85935 1.3484 
0.05 -0.37273 0.70669 1.3501 
0.10 -0.37518 055379 1.3567 
0.20 -0.37990 0.24703 1.3663 
0.30 -038441 -0.06093 1.3742 
040 -0.38873 -037001 1.3827 
@50 -0.39286 - 0.68029 1.3851 
060 - 0.39682 -0.99146 1.3978 
0.70 -040061 - 1.30377 14044 
0.80 - 040424 - 1.61713 14070 
090 - 040772 - 1.93130 1.4203 
1.00 -0.41105 - 2.24652 1.4270 

Table llb. h = 5.0; Pr = 0.7; E = 1.0; Horizontal soundfield 

E F F G G 

0.0 DO 
0.02 - 000042 
0.04 -0+)0154 
0.08 -0m517 
@12 - oGO947 
0.16 -001321 
0.20 -0.01535 
0.25 -0.01458 
0.30 -000904 
040 0.01796 
0.50 006482 
0.70 0.19670 
1QO 0.41140 
2.0 0.92376 
4.0 1.33185 
8.0 1.42428 

12.0 1.42698 

0.0 
-0G4014 
- 0.07078 
-0.10471 
-0.10526 
- 0.07726 
- 0.02635 

0%054 
0.16284 
037524 
055297 
072496 
0.67342 
0.38138 
0.08407 
om239 
OmOOo 

1GMOO -0.41105 
0.99178 -0.41105 
0.98356 -0.41106 
0.967 11 -0.41110 
0.95067 -a41118 
0.93422 -0.41131 
0.91776 -0.41148 
0.89718 -041170 
087659 -0.41187 
0.83450 -0.41180 
0.79427 -0.41065 
0.71275 - 040336 
0.59509 - 0.37829 
0.28611 -0.23318 
0.04672 - 004489 
000105 - O+WO89 
000018 -OGOOO2 

Table 12a. h = 6.0; Pr = 2.85; Horizontal sound field 
boundary values 

E G’(O) F”(O) F(a) 

0.0 - 060047 0.68998 0.7937 
0.01 -060218 065407 0.7952 
0.1 -061714 0.33041 0.8089 
0.3 - 064766 - 0.39201 0.8416 
0.5 - 0.67467 - 1.11868 0.8768 
1.0 - 072902 - 2.95341 0.967 1 
1.5 - 0.76841 -4.81263 1.0533 
2.0 - 079674 - 6.69460 1.1336 
2.5 -0.81671 - 8.59773 1.2048 
3.0 - 0.83024 - 10.52043 1.2746 
3.5 -083866 - 12.46177 1.3359 
4.0 - 0.84303 - 14.42074 1.3915 
4.5 - 0.84395 - 16.39656 14440 
5.0 - 0.84202 - 18.38878 1.4912 
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Table 12b. h = 6.0; Pr = 2%; E = 0.0 Table 12e. h = 6.0; Pr = 2.85; E = 5.0; Horizontal soundfield 

E F F’. G G’ E F F G G’ 

0.0 0.0 0.0 1WOOO - 060047 
002 O~ti14 001360 0.98799 - 0.60047 
0.05 OQOO84 0.03326 0.96998 - 060045 
0.10 0.00329 0.06410 0.93996 - 060028 
0.20 DO1251 0.11882 0.87998 -@59901 
040 0.04521 0.20279 0.76092 - 0.5897 1 
0.60 0.09166 0.25735 064497 - 0.56744 
1.0 0.20561 0.29988 0.43373 - 0.47976 
2.0 0.47759 0.22179 0.10927 -0.17765 
3.0 064326 0.11602 0.01796 -003507 
5.0 0.76294 0.02488 OQOO27 -0WO59 
8.0 0.79127 0.00223 -O@OOOO - 00xOO 

12.0 0.79372 OQOOO1 -O@OOOO -0WOOO 

@O 0.0 0.0 1XMKKl - 084202 
0.02 - 000344 - 0.33205 098316 - 0.84208 
0.05 - 0.01929 - 069861 0.95789 -084283 
0.10 - 0.06298 - 0.98589 0.91565 - 0.84764 
0.20 -a15258 -064483 0.82972 - 0.87482 
040 -0.09750 1.17556 064623 - 0.95642 
0.60 0.23273 1.86971 0.45495 - 0.92627 
1.0 0.82851 1.01850 @16525 -0.48814 
2.0 1.33939 0.22470 0+)0475 -0.01870 
3.0 1.45622 005074 OWOO8 - 0.00033 
5.0 1.48869 0%X)270 - 0WoOO -0,OOOOO 
8.0 1.49075 0.00016 -@OOOOO - 0QOOOO 

12.0 1.49124 oxKlO13 -0QOOOO -0WOOO 

Table 12~. h = 6.0; Pr = 2.85; E = 1.0; Horizontal soundfield 

Table 13a. Solution of F”’ - F” + FF” - Kf(hE) = 0; 
), = 17.7; E = 0.5 

E F F’ G G 
E F F F” 

0.0 0.0 0.0 1mOOO - 0.72902 
0.02 - 0.00054 - 0.05208 @98542 - 0.72902 
0.05 - 0.00297 -0.10450 0.96355 -0.72912 
0.10 -0QO911 - 0.12882 &92708 - 0.72974 
0.20 -0.01714 -0.00114 0.85397 -0.73270 
040 0.02911 0.45355 0.70703 - 0.73346 
060 0.14502 0.64872 0.56299 - 0.69923 
1.0 0.38255 0.50392 0.31661 -0.51443 
2.0 0.72916 022254 0.04353 - 0.09886 
3.0 087495 0.08809 oxlO - 0.00974 
5.0 095338 001290 oQOOO1 - 000005 
8.0 0.96610 000077 -0QOOOO -oWOOO 

12.0 0.96709 OWXB -OWOOO -OQOOOO 

Table 12d. h = 60; Pr = 285; E = 25; Horizontal squndjeld 
= 

E F F G G’ 

0.0 0.0 0.0 - 4.63050 
0.01 -000021 -0.03851 - 3.07906 
@02 - 000072 -0.06185 - 160808 
0.04 -0~00210 - 0.06794 088209 
0.06 - OQO316 -003180 2.59492 
0.08 - 0.00320 0.03044 3.49966 
0.10 -0.00187 0.10351 3.70521 
@17 0.01328 0.30392 1.65953 
0.24 0.03681 0.34743 -0.12282 
0.35 0.07302 0.30875 -0.31327 
0.50 0.11683 0.27927 -0.15332 
1.00 0.23794 0.20821 -0.12300 
2.00 @39516 0.11531 -0.06816 
5.00 0.55700 0.01948 -0.01161 

10.00 0.58758 000082 -0WO61 
12.00 U58836 oQOO1o -0%)019 

Entries of (F’ie) here and in part c of this Table can be 
compared; they are both for the same value of E/I’, but for 
different 1. The comparisons should be made at values of E 
which correspond to the same 1. 

0.0 0.0 0.0 1WXlO -0.81671 
0.02 -0QOO42 -0.15419 0.98367 -0.81674 
0.05 -0.00891 -032011 095916 -081708 
0.10 -0.02859 -043598 091826 -@81921 
0.20 -0.06513 -0.21548 0.83584 - 0.83067 
040 - OQO823 076876 0.66668 -0.85645 
0.60 0.19783 1.15854 049797 -081437 
1.0 @58959 0.73999 0,22767 -0.51081 
2.0 1.01832 0.22702 0.01505 - 0.04604 
3.0 1.15055 0.06819 OQOO57 - 0.00202 
5.0 1.20156 000579 -OQOOO4 -O.OOOOO 
8,O 1.20555 -000010 -000004 -OXlOOOO 

12.0 1.20483 -000014 -OWOO4 -003000 

finite, so that the natural convection results were 
not sufficiently close to the asymptotic, bound- 
ary-layer solution for differences to be ignored; 
and the streaming Reynolds numbers were small, 
rather than large. It is possible to extend the 
analysis to account for these differences, as is 
discussed below. 

It is interesting to note that the velocities in 
the flow reversal region close to the cylinder 
surface are sufficiently small for conduction to 
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Toble 13b. Solution of F”’ - F’* + FF” - Kf(lE) = 0; 
k = 11.1; E = 1.0 

E F F’ F” 

0.0 CO 0.0 - 940725 
0.01 - OmO42 - 0.07849 - 630437 
0.02 -0aO147 -0.12663 - 3.36237 
004 - 0.00432 -0.14173 1.61816 
0.06 - oaO657 - 007236 ml419 
0.08 - 0.00687 O-04920 685411 
0.10 -000446 019245 7.26580 
0.17 002446 0.58328 3.17944 
0.24 0.06946 0.66092 -0.37314 
035 0.13742 0.57085 - @73066 
0.50 0.21698 049814 - 0.38696 
1.00 0.42154 033069 -0.27226 
200 064688 0.14517 -0.11952 
500 0.80825 0.01226 -@01012 

1oaO 082278 OmO17 -OmO17 
12aO 082282 OGOOO1 - oaOOO3 

-______ - 

Table 13~. Solution of F”’ - F” + FF” - Kf@.E) = 0; 
li = 25; E = 0.9975 

---- 
E F F F” 

0.0 0.0 0.0 - 13.04763 
0.01 - oaOO55 - oa9960 - 6.92839 
002 -0QO180 -0.14057 - 1.39951 
0.04 -0GO428 - 008075 6.63493 
0.06 - 000426 0.09438 10.15997 
008 - 000030 0.30095 lo-00324 
0.10 om759 0.48023 7.70039 
0.17 005205 0.69310 - @35005 
0.24 0.09830 062317 - 0.96285 
0.35 016279 0.55888 -043191 
0.50 0.24174 0.49415 -041346 
1.00 044375 0.32561 -0.27161 
2.00 0.66459 0.14139 -0.11795 
5.00 0.82018 0.01155 - Om966 

1oQO 0.83370 oaOO15 -0aOO15 
12al 083381 OGOOOO - oaOOO3 

be the dominant mechanism of heat transfer: 
the temperature profile through the flow reversal 
region is extremely close to linear. This gives 
support for the conduction correction Richard- 
son used [2] for the inner streaming region in 
his analysis of heat transfer by acoustic streaming 
alone. 

DISCUSSION 

The effects of vibrations and oscillations on 
time-averaged heat or mass transfer have techno- 

Table 13d. Solution of F”’ - Kf(hE) = 0; 1 = 25; E = 0.9975 
(Limiting case, Re, --* 0) 

E F F’ F” f(AE) - 0.5 

0.0 0.0 0.0 - 12.46864 0.0 
0.01 - OGOO52 -009381 - 6.34942 - 002661 
0.02 -0aO168 -012899 - 0.82066 -009129 
0.04 -0T10381 - 0.05760 7.21326 - 026952 
0.06 -0GO322 0.12909 10.73745 -044163 
0.08 oaO155 034720 10.57931 - 056027 
0.10 O-01048 053797 8.27387 -061449 
0.17 0.06037 0.79027 0.19884 - 0.54073 
0.24 0.11474 0.75149 - 044998 - 0.49221 
0.35 0.19701 074699 0.03499 - @50028 
0.50 030921 @74812 -0QO129 - 0.49997 
1.00 0.68326 0.74809 OG4WOO - 0.50000 
5.00 3.67559 0.74809 OtXIOOO - 0.50000 

12m 8.91215 0.74809 OWOOO - 0.50000 

logical importance. Until very recently, it was 
not possible to compare experimental results 
with any analysis based upon an acceptable 
fluid-mechanical representation. This paper pre- 
sents the first analysis, within the framework of 
boundary-layer theory, which predicts effects of 
large magnitude (i.e. changes in heat transfer by 
a factor of up to 2 or so) from the undisturbed 
state, and for which there is experimental evi- 
dence of changes in flow patterns and of local 
heat transfer in qualitative agreement. 

The nature and extent of this agreement 
encourages the hope that the analysis can be 
extended to reproduce the circumstances of 
available measurements more precisely. This 
requires solution of the Navier-Stokes equations 
directly rather than in their simplified (boundary 
layer) form: and this involves a large number of 
boundary values for which iteration is required, 
together with direct specification of the Grashof 
number and the cylinder radius (hence some loss 
of generality), and also modification of the outer 
boundary conditions to allow for the range of 
acoustic streaming at small streaming Reynolds 
numbers. At small streaming Reynolds numbers 
the effect of the inertia terms in reducing the 
streaming motion is greatly reduced and it is 
reasonable to expect a larger influence on heat 
transfer; this would bring the analytical predic- 
tions closer to the experimental data. 
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There is a possibility of seeking experimental 
evidence under conditions which more closely 
approximate those prescribed for the analysis 
than the experimental data now available. 
The experiments should be performed by oscilla- 
ting a cylinder of large diameter at relatively 
low frequencies-a radius of about 10 cm is 
suggested, oscillated at 50-100 cps in air, say. 
The low frequencies are useful in assuring that 
the streaming Reynolds numbers are large, 
and that the acoustic wavelength is much larger 
than the cylinder diameter. The literature already 
contains some overall heat-transfer data for 
small cylinders (radius of the order of 1 cm) 
oscillated vertically and horizontally in this 
frequency range [ 14-163, and the data asymptote 
toexpectationfromisothermalstreaminganalysis 
at large Res, but local data are needed for com- 
parison with this analysis. 

The use of a large cylinder diameter has the 
advantages of reducing the value of (a/d) for a 
given a, and of increasing the Grashof number 
for a given cylinder temperature. Mechanical 
oscillation of the cylinder would be required, 
because it would not be possible at present to 
produce a standing sound field of uniform 
intensity at the very high amplitudes required. 
For observation of local transfer rates it is 
often more convenient to measure mass transfer 
of naphthalene or paradichlorobenzene, and 
some computations were performed for Pr = 
2.85 to correspond to this. 

A further extension of the work reported here 
would involve solution of further pairs of 
simultaneous ordinary differential equations 
in the style of the sequence used by Chiang and 
Kaye in a series representation of the flow and 
temperature fields away from the bottom stagna- 
tion point. Experiments indicate that the 
“bubble” of reversed flow developed in a vertical 
sound field closes by about one radian round the 
cylinder from the bottom stagnation point, and 
it would be rather gratifying if this could be 
matched by analysis. However, this requires 
extensive computer memory if it involves com- 
putations through many pairs of equations in the 

sequence, and our computations with two further 
pairs of equations suggested that convergence of 
the series decreases as E increases. 

In more general terms, there are two impor- 
tant considerations relating to future work on 
the effects of vibrations and oscillations on 
convective heat transfer. The success of the 
results reported here, in comparison with experi- 
ments, together with that of the analysis based 
on acoustic streaming by itself [2], encourage the 
belief that the formulation of the problem is 
adequate. This formulation is based on the idea 
that the stready convective motion is created 
or modified by the Reynolds stresses associated 
with the oscillating motion. The second con- 
sideration is a practical one: with present digital 
computer speeds and capacities the time required 
for computation is considerably greater than for 
more simple, classical problems in boundary 
layer theory and there is a need for some percep- 
tive analytical procedures which could afford 
useful results at lesser cost in further applica- 
tions of the theory. 
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CONVECTION NATURELLE DANS UN CHAMP SONORE 

Rc%um&On considere la convection naturelle autour d’un cylindre circulaire horizontal et isotherme 
plack dans un champ sonore transversal qui se propage dans la direction verticale ou horizontale. Ce 
probltme est traitt dans le cadre de la thtorie de la couche limite et on a tenu compte de la crtation ou de 
la modification du movement permanent convectif par les contraintes de Reynolds asso&& aux oscil- 
lations. Les rksultats sont prtsentks pour un domaine de parambtres exprimant les caracttres de la couche 
limite et les amplitudes des oscillations pour Pr = 0,7 et 2,85. Les oscillations horizontales accroissent le 
transfert thermique g la base du cylindre et les oscillations verticales diminuent le transfert thermique 
local ; quand l’intensitk des oscillations verticales est assez grande, il se dCveloppe une region d’Ccoulement 

inver&; les effets correspondants ont CtC observks exp&imentalement. 

FREIE KONVEKTION IN EINEM SCHALLFELD UND BE1 GROSSEN 
REYNOLDSZAHLEN 

Zusammenfassung-Es wird die freie Konvektion urn einen horizontalen isothermen Kreiszylinder 
betrachtet in Verbindung mit einem transversalen Feld stehender Schallwellen mit vertikaler bzw. horizon- 
taler Ausbreitungsrichtung. Das Problem wird im Rahmen der Grenzschichttheorie behandelt unter 
Berilcksichtigung der Erzeugung oder VerBnderung der station&n Konvektionsbewegung durch Rey- 
noldssche Schubspannungen, die in Verbindung mit den Schwingungen auftreten. Die angefiihrten Ergeb- 
nisse umfassen fti Pr = 0,7 und 2,85 einen Bereich von Parametern, die aus Grenzschicht- und Schwin- 
gungsgrijssen bestehen. Horizontale Schwingungen erh8hen den Wlrmeiibergang unten am Zylinder, 
vertikale Schwingungen vermindem den Grtlichen Wlrmeiibergang; wenn die Intensit%t der vertikalen 
Schwingungen gross genug ist, bildet sich ein Gebiet mit StrBmungsumkehr aus; entsprechende Effekte 

wurden in den Experimenten beobachtet. 

BJIMF1HME AKYCTBYECKOI’O rlOJIH HA CBOSOAHYIO KOHBEKUHIO 

AHHOTarlHsr--PaCCM3TpIlBaBTCR WTeCTBeHHaR KOHBeK~UR B6JIU3U I’OpU30HTaJIbHOrO KpyrO- 
BOI’O U3oTepMUYeCKOrO q&WIUHapa COBMeCTHO C IIOIIepeqHbIM CTORYUM aKyCTUWCKUM nOJIeM, 
paCIIpOCTpaHRIo~UMi% B BepTUKaJIbHOM UJIU I’OpU30HTaJIbHOM HaIIpaBJIeHUU. 3anaqa 
paCCMaTpUBaeTCR B paMKaX Tt?OpUH IIorpaHUsHoro CJIOR C YWTOM BOBHUKHOBeHUfI UJIU 
U3MeHeHUR KOHBt?KTUBHOrO CTauI4OHapHOr nBLI?%eHUfI B pe3yJIbTaTt? HaIIpHWeHUZt PeiHoJIbACa, 
BbI3BaHHbIX KOJIe6aHUHMU. npeaCTaBJIeHbI pe3yJIbTaTbI &JIH nUaIIa3OHa U3MeHeHUFI napa- 
MeTpOB nOrpaHusHoro C~IOR U 3HaseHUa KoJre6aKUfi npU Pr = 0,7 u 2,85. 

rOpU30HTaJJbHbIe Kone6aHUH J’CUJIUBaKJT TenJIOO6MeH y OCHOBaHUR IWIUHApa, a 
BepTUKaJIbHbIe YMeHbIIIaIOT JIOKaJIbHbIti TenJIOO6MeH. 

npU AOCTaTOYHO bonbmoti UHTeHCUBHOCTU BepTUKaJIbHbIX Kone6aHUk pa3BUnaeTCH 
06naCTb 06paTHoro Te4eHUR. COOTBeTCTByIO~Ue @@KTbI Ha6JHOAanUCb 3KCnepUMeHTaJIbHo. 


